Efficient Multiplex Symbolic Execution with Adaptive Search Strategy

Tianqi Zhang, Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Ji Wang
{"title":"Efficient Multiplex Symbolic Execution with Adaptive Search Strategy","authors":"Tianqi Zhang, Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Ji Wang","doi":"10.1145/3324884.3418902","DOIUrl":null,"url":null,"abstract":"Symbolic execution is still facing the scalability problem caused by path explosion and constraint solving overhead. The recently proposed MuSE framework supports exploring multiple paths by generating partial solutions in one time of solving. In this work, we improve MuSE from two aspects. Firstly, we use a light-weight check to reduce redundant partial solutions for avoiding the redundant executions having the same results. Secondly, we introduce online learning to devise an adaptive search strategy for the target programs. The preliminary experimental results indicate the promising of the proposed methods.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3418902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Symbolic execution is still facing the scalability problem caused by path explosion and constraint solving overhead. The recently proposed MuSE framework supports exploring multiple paths by generating partial solutions in one time of solving. In this work, we improve MuSE from two aspects. Firstly, we use a light-weight check to reduce redundant partial solutions for avoiding the redundant executions having the same results. Secondly, we introduce online learning to devise an adaptive search strategy for the target programs. The preliminary experimental results indicate the promising of the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应搜索策略的高效多路符号执行
符号执行仍然面临着由路径爆炸和约束求解开销引起的可伸缩性问题。最近提出的MuSE框架支持通过在一次求解中生成部分解来探索多条路径。在这项工作中,我们从两个方面改进MuSE。首先,我们使用轻量级检查来减少冗余的部分解决方案,以避免具有相同结果的冗余执行。其次,我们引入在线学习来设计目标程序的自适应搜索策略。初步的实验结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Generating Thread-Safe Classes Automatically Anti-patterns for Java Automated Program Repair Tools Automating Just-In-Time Comment Updating Synthesizing Smart Solving Strategy for Symbolic Execution Identifying and Describing Information Seeking Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1