Fast Algorithm of Evolutional Learning Neural Network

Zhong-hua Xu, Weini Chen, W. Yang, Fengnian Liu
{"title":"Fast Algorithm of Evolutional Learning Neural Network","authors":"Zhong-hua Xu, Weini Chen, W. Yang, Fengnian Liu","doi":"10.1109/ISDEA.2012.712","DOIUrl":null,"url":null,"abstract":"The neural networks have been widely applied to optimum calculation and solution of complicated problems. In particular, the evolutional learning neural network has better characteristic and higher precision than other neural networks. But the slow computational rate of evolutional learning and the local-optimum of the evolutional learning neural network seriously influence its application. In this paper, the fast algorithm combining the gradient descent algorithm with the evolutional learning algorithm can effectively solve above problems. This neural network has been extensively applied.","PeriodicalId":267532,"journal":{"name":"2012 Second International Conference on Intelligent System Design and Engineering Application","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Intelligent System Design and Engineering Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDEA.2012.712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The neural networks have been widely applied to optimum calculation and solution of complicated problems. In particular, the evolutional learning neural network has better characteristic and higher precision than other neural networks. But the slow computational rate of evolutional learning and the local-optimum of the evolutional learning neural network seriously influence its application. In this paper, the fast algorithm combining the gradient descent algorithm with the evolutional learning algorithm can effectively solve above problems. This neural network has been extensively applied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化学习神经网络的快速算法
神经网络已广泛应用于复杂问题的优化计算和求解。特别是,进化学习神经网络比其他神经网络具有更好的特性和更高的精度。但是,进化学习的计算速度慢以及进化学习神经网络的局部最优性严重影响了其应用。本文将梯度下降算法与进化学习算法相结合的快速算法可以有效地解决上述问题。这种神经网络得到了广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of DES Method to the Numerical Study of Shock Oscillations on a Supercritical Airfoil The Topological Detection Algorithm of Object Arrays in Noisy Context Based on Fuzzy Spatial Information Fusion and Prim Algorithm Robust Adaptive Fuzzy Tracking Control of Stochastic Neuron Systems A Framework for Agent-Based Collaborative Information Processing in Distributed Sensor Network Hydro Generation Scheduling Using Refined Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1