Classification of Malignant Lymphoma Types Using Convolutional Neural Network

Nuh Hatipoglu, G. Bilgin
{"title":"Classification of Malignant Lymphoma Types Using Convolutional Neural Network","authors":"Nuh Hatipoglu, G. Bilgin","doi":"10.1109/TIPTEKNO50054.2020.9299267","DOIUrl":null,"url":null,"abstract":"In this study, it is intended to increase the clas- sification accuracy results of malignant lymphoma images by evaluating spatial relations. As a first step, convolutional neural network (CNN) based features are extracted in the original RGB color space of digital histopathalogical images. Classification models of each feature vectors are obtained by employing CNN, support vector machines (SVM) and random forest (RF) methods. For comparison purposes, the classification accuracy results obtained from supervised learning methods are presented in the experimental results section.","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"123 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, it is intended to increase the clas- sification accuracy results of malignant lymphoma images by evaluating spatial relations. As a first step, convolutional neural network (CNN) based features are extracted in the original RGB color space of digital histopathalogical images. Classification models of each feature vectors are obtained by employing CNN, support vector machines (SVM) and random forest (RF) methods. For comparison purposes, the classification accuracy results obtained from supervised learning methods are presented in the experimental results section.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的恶性淋巴瘤类型分类
本研究旨在通过空间关系的评价来提高恶性淋巴瘤图像的分类精度。首先,在数字组织病理图像的原始RGB色彩空间中提取基于卷积神经网络(CNN)的特征。采用CNN、支持向量机(SVM)和随机森林(RF)方法得到各特征向量的分类模型。为了比较,实验结果部分给出了监督学习方法获得的分类精度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1