Turning mobile laser scanning points into 2D/3D on-road object models: Current status

Zongliang Zhang, Ming Cheng, Xinqu Chen, Menglan Zhou, Yifei Chen, Jonathan Li, Hongshan Nie
{"title":"Turning mobile laser scanning points into 2D/3D on-road object models: Current status","authors":"Zongliang Zhang, Ming Cheng, Xinqu Chen, Menglan Zhou, Yifei Chen, Jonathan Li, Hongshan Nie","doi":"10.1109/IGARSS.2015.7326581","DOIUrl":null,"url":null,"abstract":"Traditional road surveying methods rely largely on in-situ measurements, which are time consuming and labor intensive. Recent Mobile Laser Scanning (MLS) techniques enable collection of road data at a normal driving speed. However, extracting required information from collected MLS data remains a challenging task. This paper focuses on examining the current status of automated on-road object extraction techniques from 3D MLS points over the last five years. Several kinds of on-road objects are included in this paper: curbs and road surfaces, road markings, pavement cracks, as well as manhole and sewer well covers. We evaluate the extraction techniques according to their method design, degree of automation, precision, and computational efficiency. Given the large volume of MLS data, to date most MLS object extraction techniques are aiming to improve their precision and efficiency.","PeriodicalId":125717,"journal":{"name":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2015.7326581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Traditional road surveying methods rely largely on in-situ measurements, which are time consuming and labor intensive. Recent Mobile Laser Scanning (MLS) techniques enable collection of road data at a normal driving speed. However, extracting required information from collected MLS data remains a challenging task. This paper focuses on examining the current status of automated on-road object extraction techniques from 3D MLS points over the last five years. Several kinds of on-road objects are included in this paper: curbs and road surfaces, road markings, pavement cracks, as well as manhole and sewer well covers. We evaluate the extraction techniques according to their method design, degree of automation, precision, and computational efficiency. Given the large volume of MLS data, to date most MLS object extraction techniques are aiming to improve their precision and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将移动激光扫描点转化为2D/3D道路物体模型:现状
传统的道路测量方法主要依赖于现场测量,费时费力。最近的移动激光扫描(MLS)技术可以在正常行驶速度下收集道路数据。然而,从收集的MLS数据中提取所需信息仍然是一项具有挑战性的任务。本文主要研究了近五年来基于三维MLS点的道路物体自动提取技术的现状。本文包括几种道路上的物体:路边和路面,道路标线,路面裂缝,以及人孔和下水道井盖。我们根据它们的方法设计、自动化程度、精度和计算效率来评估提取技术。由于海量的MLS数据,迄今为止,大多数MLS目标提取技术的目标都是提高其精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interferometric and polarimetric methods to determine SWE, fresh snow depth and the anisotropy of dry snow Usefulness assessment of polarimetric parameters for line extraction from agricultural areas DEM and DHM reconstruction in tropical forests: Tomographic results at P-band with three flight tracks Nationwide ground deformation monitoring by persistent scatterer interferometry MICAP (Microwave imager combined active and passive): A new instrument for Chinese ocean salinity satellite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1