Efficient Deterministic Conditional Sampling of Multivariate Gaussian Densities

Daniel Frisch, U. Hanebeck
{"title":"Efficient Deterministic Conditional Sampling of Multivariate Gaussian Densities","authors":"Daniel Frisch, U. Hanebeck","doi":"10.1109/MFI49285.2020.9235212","DOIUrl":null,"url":null,"abstract":"We propose a fast method for deterministic multi-variate Gaussian sampling. In many application scenarios, the commonly used stochastic Gaussian sampling could simply be replaced by our method – yielding comparable results with a much smaller number of samples. Conformity between the reference Gaussian density function and the distribution of samples is established by minimizing a distance measure between Gaussian density and Dirac mixture density. A modified Cramér-von Mises distance of the Localized Cumulative Distributions (LCDs) of the two densities is employed that allows a direct comparison between continuous and discrete densities in higher dimensions. Because numerical minimization of this distance measure is not feasible under real time constraints, we propose to build a library that maintains sample locations from the standard normal distribution as a template for each number of samples in each dimension. During run time, the requested sample set is re-scaled according to the eigenvalues of the covariance matrix, rotated according to the eigenvectors, and translated according to the mean vector, thus adequately representing arbitrary multivariate normal distributions.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a fast method for deterministic multi-variate Gaussian sampling. In many application scenarios, the commonly used stochastic Gaussian sampling could simply be replaced by our method – yielding comparable results with a much smaller number of samples. Conformity between the reference Gaussian density function and the distribution of samples is established by minimizing a distance measure between Gaussian density and Dirac mixture density. A modified Cramér-von Mises distance of the Localized Cumulative Distributions (LCDs) of the two densities is employed that allows a direct comparison between continuous and discrete densities in higher dimensions. Because numerical minimization of this distance measure is not feasible under real time constraints, we propose to build a library that maintains sample locations from the standard normal distribution as a template for each number of samples in each dimension. During run time, the requested sample set is re-scaled according to the eigenvalues of the covariance matrix, rotated according to the eigenvectors, and translated according to the mean vector, thus adequately representing arbitrary multivariate normal distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元高斯密度的高效确定性条件抽样
提出了一种快速的确定性多变量高斯抽样方法。在许多应用场景中,常用的随机高斯抽样可以简单地用我们的方法代替——用更少的样本数量产生可比的结果。通过最小化高斯密度与Dirac混合密度之间的距离,建立了参考高斯密度函数与样本分布的一致性。采用了两个密度的局部累积分布(lcd)的改进cram -von Mises距离,允许在更高维度上对连续密度和离散密度进行直接比较。由于这种距离度量的数值最小化在实时约束下是不可行的,因此我们建议建立一个库,该库维护来自标准正态分布的样本位置,作为每个维度中每个样本数量的模板。在运行时,所请求的样本集根据协方差矩阵的特征值重新缩放,根据特征向量旋转,并根据平均向量平移,从而充分表示任意多元正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OAFuser: Online Adaptive Extended Object Tracking and Fusion using automotive Radar Detections Observability driven Multi-modal Line-scan Camera Calibration Localization and velocity estimation based on multiple bistatic measurements A Continuous Probabilistic Origin Association Filter for Extended Object Tracking Towards Automatic Classification of Fragmented Rock Piles via Proprioceptive Sensing and Wavelet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1