Myocardial infarction detection using magnitude squared coherence and Support Vector Machine

K. Padmavathi, K. R. Krishna
{"title":"Myocardial infarction detection using magnitude squared coherence and Support Vector Machine","authors":"K. Padmavathi, K. R. Krishna","doi":"10.1109/MEDCOM.2014.7006037","DOIUrl":null,"url":null,"abstract":"This paper presents Magnitude Squared coherence(MSC) technique and Support Vector Machines (SVM) using kernel function for the classification of Inferior Myocardial Infarction. The coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. MSC technique uses Welch method for calculating PSD. For the detection of normal and IMI beats, MSC technique output values are given as the input features for the SVM classifier. Overall accuracy of SVM classifier is 99.3 percent. The data was collected from MIT/BIH PTB database.","PeriodicalId":246177,"journal":{"name":"2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEDCOM.2014.7006037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper presents Magnitude Squared coherence(MSC) technique and Support Vector Machines (SVM) using kernel function for the classification of Inferior Myocardial Infarction. The coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. MSC technique uses Welch method for calculating PSD. For the detection of normal and IMI beats, MSC technique output values are given as the input features for the SVM classifier. Overall accuracy of SVM classifier is 99.3 percent. The data was collected from MIT/BIH PTB database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于幅度平方相干性和支持向量机的心肌梗死检测
本文提出了相干度平方(MSC)技术和核函数支持向量机(SVM)对下壁心肌梗死的分类。相干函数找到两个信号之间的共同频率,并评估两个信号的相似度。MSC技术采用Welch法计算PSD。对于正常节拍和中频节拍的检测,给出MSC技术的输出值作为SVM分类器的输入特征。SVM分类器的总体准确率为99.3%。数据来自MIT/BIH PTB数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparitive analysis of various cloud based biomedcial services Impact of usage of discrete networks on Telemedicine capabilities especially in India Region incrementing visual cryptography Computerization of the Amsler Grid test for detecting macular degeneration Fast SVD free low-rank matrix recovery: Application to dynamic MRI reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1