Qihang Shi, N. Asadizanjani, Domenic Forte, M. Tehranipoor
{"title":"A layout-driven framework to assess vulnerability of ICs to microprobing attacks","authors":"Qihang Shi, N. Asadizanjani, Domenic Forte, M. Tehranipoor","doi":"10.1109/HST.2016.7495575","DOIUrl":null,"url":null,"abstract":"Microprobing attacks against integrated circuits (IC) for security critical applications have become a serious concern. With the help of modern circuit editing techniques, an attacker could remove layers of materials and expose wires carrying security critical information for probing. Existing protection methods use active shielding to detect such attacks. However, this technique has been proven to be ineffective, while layers of trigger wire mesh introduce prohibitive cost overhead. In this paper, we investigate the problem of protection against microprobing attacks and present a method to scan layout for microprobing vulnerabilities so that more secure and less costly protections can be developed. Exemplary applications on OpenSPARC T1 core layout is used to evaluate the proposed flow and substantiate findings.","PeriodicalId":194799,"journal":{"name":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2016.7495575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Microprobing attacks against integrated circuits (IC) for security critical applications have become a serious concern. With the help of modern circuit editing techniques, an attacker could remove layers of materials and expose wires carrying security critical information for probing. Existing protection methods use active shielding to detect such attacks. However, this technique has been proven to be ineffective, while layers of trigger wire mesh introduce prohibitive cost overhead. In this paper, we investigate the problem of protection against microprobing attacks and present a method to scan layout for microprobing vulnerabilities so that more secure and less costly protections can be developed. Exemplary applications on OpenSPARC T1 core layout is used to evaluate the proposed flow and substantiate findings.