Secrecy-Driven Energy-Efficient Multi-User Computation Offloading via Mobile Edge Computing

Yuan Wu, Daohang Wang, Xu Xu, L. Qian, Liang Huang, Wei-dang Lu
{"title":"Secrecy-Driven Energy-Efficient Multi-User Computation Offloading via Mobile Edge Computing","authors":"Yuan Wu, Daohang Wang, Xu Xu, L. Qian, Liang Huang, Wei-dang Lu","doi":"10.1109/GCWkshps45667.2019.9024695","DOIUrl":null,"url":null,"abstract":"Mobile edge computing (MEC) has been envisioned as a promising scheme to address the explosive growth of computation-hungry mobile applications in future cellular systems. In this paper, we investigate the secrecy-driven energy-efficient computation offloading via MEC. Specifically, we take the secrecy-outage into account when an eavesdropper overhears the mobile terminal's (MT's) offloaded data to the edge server (ES) and formate a joint optimization of the MT's computation offloading, radio transmission, and secrecy-outage level, with the objective of minimizing the MT's energy consumption for completing its required workload. Despite the non-convexity of the joint optimization problem, we propose an efficient algorithm to find the optimal offloading solution. Based on the optimal solution for an arbitrary offloading pair of MT and ES, we further consider the scenario of multi-MT and multi-ES, and investigate the optimal pairing between the MTs and ESs for computation offloading, with the objective of minimizing all MTs' total energy consumption. Exploiting the matching structure of the pairing problem, we propose an efficient auction-based time-division scheduling algorithm to find the optimal pairing solution. Numerical results are provided to validate the effectiveness and efficiency of our proposed algorithms and the advantage of our computation offloading with secrecy-provisioning.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Mobile edge computing (MEC) has been envisioned as a promising scheme to address the explosive growth of computation-hungry mobile applications in future cellular systems. In this paper, we investigate the secrecy-driven energy-efficient computation offloading via MEC. Specifically, we take the secrecy-outage into account when an eavesdropper overhears the mobile terminal's (MT's) offloaded data to the edge server (ES) and formate a joint optimization of the MT's computation offloading, radio transmission, and secrecy-outage level, with the objective of minimizing the MT's energy consumption for completing its required workload. Despite the non-convexity of the joint optimization problem, we propose an efficient algorithm to find the optimal offloading solution. Based on the optimal solution for an arbitrary offloading pair of MT and ES, we further consider the scenario of multi-MT and multi-ES, and investigate the optimal pairing between the MTs and ESs for computation offloading, with the objective of minimizing all MTs' total energy consumption. Exploiting the matching structure of the pairing problem, we propose an efficient auction-based time-division scheduling algorithm to find the optimal pairing solution. Numerical results are provided to validate the effectiveness and efficiency of our proposed algorithms and the advantage of our computation offloading with secrecy-provisioning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于移动边缘计算的秘密驱动节能多用户计算卸载
移动边缘计算(MEC)已被设想为一种有前途的方案,以解决未来蜂窝系统中计算密集型移动应用程序的爆炸式增长。本文研究了基于MEC的保密驱动的节能计算卸载。具体而言,我们考虑了窃听者偷听到移动终端向边缘服务器(ES)卸载数据时的保密中断,并形成了移动终端计算卸载、无线电传输和保密中断水平的联合优化,目标是最小化移动终端完成所需工作所需的能耗。尽管联合优化问题具有非凸性,但我们提出了一种寻找最优卸载解的有效算法。在求解任意MT和ES卸载对最优解的基础上,进一步考虑多MT和多ES的情况,以最小化所有MT和ES的总能耗为目标,研究MT和ES之间的最优配对进行计算卸载。利用配对问题的匹配结构,提出了一种高效的基于拍卖的分时调度算法来寻找配对的最优解。数值结果验证了所提算法的有效性和高效性,以及采用保密配置的计算卸载的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timeliness Analysis of Service-Driven Collaborative Mobile Edge Computing in UAV Swarm 5G Enabled Mobile Healthcare for Ambulances Secure Quantized Sequential Detection in the Internet of Things with Eavesdroppers A Novel Indoor Coverage Measurement Scheme Based on FRFT and Gaussian Process Regression A Data-Driven Deep Neural Network Pruning Approach Towards Efficient Digital Signal Modulation Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1