In-situ solder fatigue studies using a thermal lap shear test

R. Dudek, W. Faust, J. Vogel, B. Michel
{"title":"In-situ solder fatigue studies using a thermal lap shear test","authors":"R. Dudek, W. Faust, J. Vogel, B. Michel","doi":"10.1109/EPTC.2004.1396641","DOIUrl":null,"url":null,"abstract":"A combined numerical-testing methodology has been developed for the evaluation of thermo-mechanical fatigue of small volumes of electronic materials loaded in shear. Small lap-shear specimens are mounted in a loading frame with slightly different thermal expansion, causing shear loading of the joint material when subjected to thermal loads. In-situ deformation analysis of the joint surface is an integral part of the procedure. Fatigue of Sn95.5Ag3.8Cu0.7 solder joints was investigated with this \"thermal lap shear test\". During thermal cycling in a microscope temperature chamber the changes of the microstructure were monitored. When playing these micrographs taken at different temperatures as a video sequence it becomes obvious that sliding between boundaries of the Sn-rich phases is the dominant deformation mechanism, which leads to crack propagation at multiple fronts along these \"grain boundaries\". However, it is shown that the final macroscopic crack starts in the region of highest equivalent creep strain and follows the path along its local maximum, corresponding to the finite element analyses (FEA) results. Fatigue progress is achieved by conventional thermal shock cycling, during which the electrical resistance changes are recorded. Microstructural degradation progress, electrical resistance changes of the joints and FEA based failure prediction are finally compared.","PeriodicalId":370907,"journal":{"name":"Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004) (IEEE Cat. No.04EX971)","volume":"15 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004) (IEEE Cat. No.04EX971)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2004.1396641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A combined numerical-testing methodology has been developed for the evaluation of thermo-mechanical fatigue of small volumes of electronic materials loaded in shear. Small lap-shear specimens are mounted in a loading frame with slightly different thermal expansion, causing shear loading of the joint material when subjected to thermal loads. In-situ deformation analysis of the joint surface is an integral part of the procedure. Fatigue of Sn95.5Ag3.8Cu0.7 solder joints was investigated with this "thermal lap shear test". During thermal cycling in a microscope temperature chamber the changes of the microstructure were monitored. When playing these micrographs taken at different temperatures as a video sequence it becomes obvious that sliding between boundaries of the Sn-rich phases is the dominant deformation mechanism, which leads to crack propagation at multiple fronts along these "grain boundaries". However, it is shown that the final macroscopic crack starts in the region of highest equivalent creep strain and follows the path along its local maximum, corresponding to the finite element analyses (FEA) results. Fatigue progress is achieved by conventional thermal shock cycling, during which the electrical resistance changes are recorded. Microstructural degradation progress, electrical resistance changes of the joints and FEA based failure prediction are finally compared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用热搭接剪切试验进行现场焊料疲劳研究
为评价小体积电子材料在剪切作用下的热-机械疲劳,提出了一种数值-试验相结合的方法。将小的搭剪试件安装在热膨胀略有不同的加载框架中,使接头材料在热载荷作用下产生剪切载荷。节理表面的现场变形分析是该过程的一个组成部分。采用热搭接剪切试验研究了Sn95.5Ag3.8Cu0.7焊点的疲劳性能。在显微镜温度室热循环过程中,观察了显微组织的变化。当播放这些不同温度下的显微照片作为视频序列时,可以明显看出富锡相边界之间的滑动是主要的变形机制,这导致裂纹沿着这些“晶界”在多个前沿扩展。然而,与有限元分析结果一致,最终宏观裂纹始于等效蠕变应变最高的区域,并沿着其局部最大值的路径发展。疲劳过程是通过传统的热冲击循环来实现的,在此过程中,电阻的变化被记录下来。最后对接头的微观组织退化过程、电阻变化和基于有限元分析的失效预测进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective method for calculation of corner stresses with applications to plastic IC packages A study on the mechanical behavior of the sputtered nickel thin films for UBM applications Hygro-thermo-mechanical modeling of mixed flip-chip and wire bond stacked die BGA module with molded underfill Application of ABAQUS/Explicit submodeling technique in drop simulation of system assembly Design of double layer WLCSP using DOE with factorial analysis technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1