Multilayer SAW device for flow rate sensing in a microfluidic channel

H. B. Thu, T. C. Duc
{"title":"Multilayer SAW device for flow rate sensing in a microfluidic channel","authors":"H. B. Thu, T. C. Duc","doi":"10.1109/ICSENS.2013.6688246","DOIUrl":null,"url":null,"abstract":"This paper presents a novel microfluidic flow rate sensor based on surface acoustic wave (SAW) principle and aluminum nitride (AlN) film on silicon substrate. The working principles of this proposed SAW device are velocity decay, delay time as well as insertion losses reported in cases of linear and exponential motion. It utilizes CMOS compatible materials, AlN film on Si substrate, being suitable for inexpensive and reliable systems. AlN thin film layer is deposited on the top of silicon substrate. The microfluidic channel is etched through wafer and perpendicular to the SAW propagation path between the transmitter IDT and receiver IDT. Electrical and mechanical characteristic analysis is performed to accurately determine the relation between flow motion and output signal. Velocity decay constant decreases and achieves the saturated state from -1 dB to -4.5 dB after 60 mm/s for the linear motion. Otherwise, velocity decay constant is inversely proportional to the exponential order of velocity due to the leaky acoustic wave in the microfluidic channel.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"61 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a novel microfluidic flow rate sensor based on surface acoustic wave (SAW) principle and aluminum nitride (AlN) film on silicon substrate. The working principles of this proposed SAW device are velocity decay, delay time as well as insertion losses reported in cases of linear and exponential motion. It utilizes CMOS compatible materials, AlN film on Si substrate, being suitable for inexpensive and reliable systems. AlN thin film layer is deposited on the top of silicon substrate. The microfluidic channel is etched through wafer and perpendicular to the SAW propagation path between the transmitter IDT and receiver IDT. Electrical and mechanical characteristic analysis is performed to accurately determine the relation between flow motion and output signal. Velocity decay constant decreases and achieves the saturated state from -1 dB to -4.5 dB after 60 mm/s for the linear motion. Otherwise, velocity decay constant is inversely proportional to the exponential order of velocity due to the leaky acoustic wave in the microfluidic channel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于微流体通道中流量传感的多层SAW装置
提出了一种基于表面声波(SAW)原理和硅衬底氮化铝(AlN)薄膜的新型微流控流量传感器。所提出的SAW器件的工作原理是速度衰减,延迟时间以及线性和指数运动情况下的插入损耗。它采用CMOS兼容材料,硅衬底上的AlN薄膜,适用于廉价可靠的系统。在硅衬底上沉积AlN薄膜层。微流控通道通过晶片蚀刻,垂直于发射IDT和接收IDT之间的声表面波传播路径。为了准确地确定流量运动与输出信号之间的关系,进行了电气和机械特性分析。在60 mm/s的直线运动速度下,速度衰减常数减小,达到饱和状态,从-1 dB到-4.5 dB。否则,由于微流控通道中存在泄漏声波,速度衰减常数与速度指数级成反比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evaluation of electric-field sensors for projectile detection Large area all-elastomer capacitive tactile arrays Thickness dependent adhesion force and its correlation to surface roughness in multilayered graphene Development of a thin-film thermocouple matrix for in-situ temperature measurement in a lithium ion pouch cell One side electrode type fluidic based capacitive pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1