Synergy of the westerly winds and monsoons in lake evolution of global closed basins since the Last Glacial Maximum

Yu Li, Yuxin Zhang
{"title":"Synergy of the westerly winds and monsoons in lake evolution of global closed basins since the Last Glacial Maximum","authors":"Yu Li, Yuxin Zhang","doi":"10.5194/cp-2020-53","DOIUrl":null,"url":null,"abstract":"Abstract. Monsoon system and westerly circulation, to which climate change responds differently, are two important components of global atmospheric circulation, interacting with each other in the mid-to-low latitudes and having synergy effect to those regions. Relevant researches on global millennial-scale climate change in monsoon and westerlies regions are mostly devoted to multi-proxy analyses of lakes, stalagmites, ice cores, marine and eolian sediments. Different responses from these proxies to long-term environmental change make understanding climate change pattern in monsoonal and westerlies regions difficult. Accordingly, we disaggregated global closed basins into areas governed by monsoon and westerly winds and unified palaeoclimate indicators, as well as combined with the lake models and paleoclimate simulations for tracking millennial-scale evolution characteristics and mechanisms of global monsoon and westerly winds since the Last Glacial Maximum (LGM). Our results concluded that the effective moisture in most closed basins of the mid-latitudes Northern Hemisphere is mainly a trend on the decrease since the LGM, and of the low-latitudes is mainly a trend on the rise. Millennial-scale water balance change exhibits an obvious boundary between global westerlies and monsoon regions in closed basins, particularly in the Northern Hemisphere. In the monsoon dominated closed basins of the Northern Hemisphere, humid climate prevails in the early-mid Holocene and relative dry climate appears in the LGM and late Holocene. While in the westerly winds dominated closed basins of the Northern Hemisphere, climate is characterized by relative humid LGM and mid-Holocene (MH) compared with the dry early Holocene, which is likely to be connected with precipitation brought by the westerly circulation. This study provides insights into long-term evolution and synergy of monsoon and westerly wind systems and basis for projection of future hydrological balance in the low-to-mid latitudes.","PeriodicalId":263057,"journal":{"name":"Climate of The Past Discussions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/cp-2020-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Monsoon system and westerly circulation, to which climate change responds differently, are two important components of global atmospheric circulation, interacting with each other in the mid-to-low latitudes and having synergy effect to those regions. Relevant researches on global millennial-scale climate change in monsoon and westerlies regions are mostly devoted to multi-proxy analyses of lakes, stalagmites, ice cores, marine and eolian sediments. Different responses from these proxies to long-term environmental change make understanding climate change pattern in monsoonal and westerlies regions difficult. Accordingly, we disaggregated global closed basins into areas governed by monsoon and westerly winds and unified palaeoclimate indicators, as well as combined with the lake models and paleoclimate simulations for tracking millennial-scale evolution characteristics and mechanisms of global monsoon and westerly winds since the Last Glacial Maximum (LGM). Our results concluded that the effective moisture in most closed basins of the mid-latitudes Northern Hemisphere is mainly a trend on the decrease since the LGM, and of the low-latitudes is mainly a trend on the rise. Millennial-scale water balance change exhibits an obvious boundary between global westerlies and monsoon regions in closed basins, particularly in the Northern Hemisphere. In the monsoon dominated closed basins of the Northern Hemisphere, humid climate prevails in the early-mid Holocene and relative dry climate appears in the LGM and late Holocene. While in the westerly winds dominated closed basins of the Northern Hemisphere, climate is characterized by relative humid LGM and mid-Holocene (MH) compared with the dry early Holocene, which is likely to be connected with precipitation brought by the westerly circulation. This study provides insights into long-term evolution and synergy of monsoon and westerly wind systems and basis for projection of future hydrological balance in the low-to-mid latitudes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
末次盛冰期以来全球封闭盆地湖泊演化中西风和季风的协同作用
摘要季风系统和西风环流是全球大气环流的两个重要组成部分,它们对气候变化的响应不同,在中低纬度地区相互作用,对这些地区具有协同效应。全球千年尺度季风和西风区气候变化的相关研究多集中在湖泊、石笋、冰芯、海洋和风成沉积物的多代理分析上。这些指标对长期环境变化的不同响应使得理解季风和西风带地区的气候变化模式变得困难。据此,我们将全球封闭盆地划分为季风和西风控制区域,统一古气候指标,并结合湖泊模式和古气候模拟,追踪末次盛冰期以来全球季风和西风的千年演化特征和机制。结果表明,北半球中纬度地区大部分封闭盆地的有效水分自LGM以来主要呈减少趋势,而低纬度地区的有效水分主要呈上升趋势。千年尺度的水平衡变化在全球西风带和季风区之间表现出明显的边界,特别是在北半球。在以季风为主的北半球封闭盆地,全新世早中期气候湿润,而全新世晚期和晚全新世气候相对干燥。而在以西风为主的北半球封闭盆地,相对于全新世早期的干燥,LGM和中全新世相对湿润,这可能与西风环流带来的降水有关。这项研究为季风和西风系统的长期演变和协同作用提供了新的见解,并为预测未来中低纬度地区的水文平衡提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spring onset and seasonality patterns during the Lateglacial in the eastern Baltic region Simulated range of mid-Holocene precipitation changes to extended lakes and wetlands over North Africa Supplementary material to "Low-latitude climate change linked to high-latitude glaciation during the Late Paleozoic Ice Age: evidence from the terrigenous detrital kaolinite" Holocene wildfire regimes in forested peatlands in western Siberia: interaction between peatland moisture conditions and the composition of plant functional types Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil deposits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1