In-RDBMS inverted indexes revisited

Ian Rae, A. Halverson, J. Naughton
{"title":"In-RDBMS inverted indexes revisited","authors":"Ian Rae, A. Halverson, J. Naughton","doi":"10.1109/ICDE.2014.6816664","DOIUrl":null,"url":null,"abstract":"Every major open-source and commercial RDBMS offers some form of support for full-text search using inverted indexes. When providing this support, some developers have implemented specialized indexes that adapt techniques from the Information Retrieval (IR) community to work in a database setting, while others have opted to rely on the standard relational query engine to process inverted index lookups. This choice is an important one, since the storage formats and algorithms used can vary greatly between a specialized index and a relational index, but these alternatives have not been thoroughly compared in the same system. Our work explores the differences in implementation and performance of three representative environments for an in-RDBMS inverted index: an in-RDBMS IR engine, a row-oriented relational query engine, and a column-oriented relational query engine. We found that a specialized IR engine integrated into the RDBMS can provide more than an order of magnitude speedup over both the row- and column-oriented relational query engines for conjunctive and phrase queries. For warm queries, this advantage is largely algorithmic, and we show that by using ZigZag merge join to accelerate conjunctive and phrase query processing, relational inverted indexes can provide performance comparable to a specialized in-RDBMS IR engine with no change to the underlying storage format. Compression and index format, in contrast, have more impact on cold queries, where the IR and column-oriented engines are able to outperform the row-oriented engine, even with ZigZag merge join.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Every major open-source and commercial RDBMS offers some form of support for full-text search using inverted indexes. When providing this support, some developers have implemented specialized indexes that adapt techniques from the Information Retrieval (IR) community to work in a database setting, while others have opted to rely on the standard relational query engine to process inverted index lookups. This choice is an important one, since the storage formats and algorithms used can vary greatly between a specialized index and a relational index, but these alternatives have not been thoroughly compared in the same system. Our work explores the differences in implementation and performance of three representative environments for an in-RDBMS inverted index: an in-RDBMS IR engine, a row-oriented relational query engine, and a column-oriented relational query engine. We found that a specialized IR engine integrated into the RDBMS can provide more than an order of magnitude speedup over both the row- and column-oriented relational query engines for conjunctive and phrase queries. For warm queries, this advantage is largely algorithmic, and we show that by using ZigZag merge join to accelerate conjunctive and phrase query processing, relational inverted indexes can provide performance comparable to a specialized in-RDBMS IR engine with no change to the underlying storage format. Compression and index format, in contrast, have more impact on cold queries, where the IR and column-oriented engines are able to outperform the row-oriented engine, even with ZigZag merge join.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新访问了In-RDBMS倒排索引
每个主要的开源和商业RDBMS都提供某种形式的支持,支持使用倒排索引进行全文搜索。在提供这种支持时,一些开发人员实现了专门的索引,这些索引采用了信息检索(Information Retrieval, IR)社区的技术,以便在数据库设置中工作,而另一些开发人员则选择依赖标准关系查询引擎来处理倒排索引查找。这种选择很重要,因为专用索引和关系索引之间使用的存储格式和算法差别很大,但是在同一系统中还没有对这些替代方法进行彻底的比较。我们的工作探讨了rdbms内倒排索引的三种代表性环境在实现和性能上的差异:rdbms内IR引擎、面向行的关系查询引擎和面向列的关系查询引擎。我们发现,与面向行和面向列的关系查询引擎相比,集成到RDBMS中的专用IR引擎可以为连接查询和短语查询提供一个数量级以上的加速。对于热查询,这种优势很大程度上取决于算法,并且我们表明,通过使用ZigZag合并连接来加速连词和短语查询处理,关系倒排索引可以提供与专用的rdbms IR引擎相当的性能,而无需更改底层存储格式。相比之下,压缩和索引格式对冷查询有更大的影响,其中IR和面向列的引擎能够优于面向行的引擎,即使使用ZigZag合并连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing uncertainty in spatial and spatio-temporal data Locality-sensitive operators for parallel main-memory database clusters KnowLife: A knowledge graph for health and life sciences We can learn your #hashtags: Connecting tweets to explicit topics A demonstration of MNTG - A web-based road network traffic generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1