{"title":"Hybrid MODWT-FFNN model for time series data forecasting","authors":"Hermansah, D. Rosadi, Herni Utami, Abdurakhman, G. Darmawan","doi":"10.1063/1.5139175","DOIUrl":null,"url":null,"abstract":"In this research, we propose a hybrid MODWT-FFNN model for non-stationary and Long-Range Dependence (LRD) of time series data. The hybrid MODWT-FFNN model is a combination of the Maximal Overlap Discrete Wavelet Transform (MODWT) and the Feed-Forward Neural Network (FFNN) models. The decomposition of time series data using the MODWT model will produce wavelet (detail) and scale (smooth) coefficients. The detail and smooth coefficients are then estimated using the FFNN model. The final result of time series data forecasting obtained from the combined forecast value of the detail and smooth coefficients. In the case study of daily Rainfall data in Aceh, the Root Mean Squared Error (RMSE) and Median Absolute Deviation (MAD) values obtained by our model are smaller than those of the ARIMA, exponential smoothing, and MODWT-ARMA models. The second case study of the Jakarta Stock Exchange Composite (JKSE) daily data, obtained the smallest RMSE and MAD values in the hybrid MODWT-ARMA model, the model we propose is in the second number. This indicates that the hybrid MODWT-FFNN model is useful for adding forecasting accuracy to seasonal data patterns.","PeriodicalId":209108,"journal":{"name":"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5139175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this research, we propose a hybrid MODWT-FFNN model for non-stationary and Long-Range Dependence (LRD) of time series data. The hybrid MODWT-FFNN model is a combination of the Maximal Overlap Discrete Wavelet Transform (MODWT) and the Feed-Forward Neural Network (FFNN) models. The decomposition of time series data using the MODWT model will produce wavelet (detail) and scale (smooth) coefficients. The detail and smooth coefficients are then estimated using the FFNN model. The final result of time series data forecasting obtained from the combined forecast value of the detail and smooth coefficients. In the case study of daily Rainfall data in Aceh, the Root Mean Squared Error (RMSE) and Median Absolute Deviation (MAD) values obtained by our model are smaller than those of the ARIMA, exponential smoothing, and MODWT-ARMA models. The second case study of the Jakarta Stock Exchange Composite (JKSE) daily data, obtained the smallest RMSE and MAD values in the hybrid MODWT-ARMA model, the model we propose is in the second number. This indicates that the hybrid MODWT-FFNN model is useful for adding forecasting accuracy to seasonal data patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列数据预测的混合MODWT-FFNN模型
在这项研究中,我们提出了一种混合MODWT-FFNN模型来处理时间序列数据的非平稳和远程依赖(LRD)。MODWT-FFNN混合模型是最大重叠离散小波变换(MODWT)和前馈神经网络(FFNN)模型的结合。使用MODWT模型分解时间序列数据将产生小波(细节)和尺度(平滑)系数。然后使用FFNN模型估计细节系数和平滑系数。时间序列数据预测的最终结果由细节系数和平滑系数的联合预测值得到。以亚齐省的日降雨量数据为例,我们的模型得到的均方根误差(RMSE)和绝对偏差中位数(MAD)值小于ARIMA、指数平滑和MODWT-ARMA模型。第二个案例研究了雅加达证券交易所综合指数(JKSE)的每日数据,得到了最小的RMSE和MAD值在混合MODWT-ARMA模型中,我们提出的模型是在第二个数字中。这表明混合MODWT-FFNN模型有助于提高季节数据模式的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Delta normal and delta gamma normal approximation in risk measurement of portfolio consisted of option and stock Forecasting Philippines imports and exports using Bayesian artificial neural network and autoregressive integrated moving average An unconstrained minimization technique using successive implementations of Golden Search algorithm Insurance premium model for case delay or cancelation of Indonesian local flight Multivariate generalized Poisson regression model with exposure and correlation as a function of covariates: Parameter estimation and hypothesis testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1