Real-time human action recognition using depth motion maps and convolutional neural networks

Jiang Li, Xiaojuan Ban, Guang Yang, Yitong Li, Yu Wang
{"title":"Real-time human action recognition using depth motion maps and convolutional neural networks","authors":"Jiang Li, Xiaojuan Ban, Guang Yang, Yitong Li, Yu Wang","doi":"10.1504/IJHPCN.2016.10011433","DOIUrl":null,"url":null,"abstract":"This paper presents an effective approach for recognising human actions from depth video sequences by employing depth motion maps (DMMs) and convolutional neural networks (CNNs). Depth maps are projected onto three orthogonal planes, and frame differences under each view (front/side/top) are then accumulated through an entire depth video sequence generating a DMM. We build a model architecture of multi-view convolutional neural network (MV-CNN) containing multiple networks to deal with three DMMs (DMMf, DMMs, DMMt). The output of full-connected layer under each view is integrated as feature representation, which is then learned in the last softmax regression layer to predict human actions. Experimental results on MSR-Action3D dataset and UTD-MHAD dataset indicate that the proposed approach achieves state-of-the-art recognition performance and is appropriate for real-time recognition.","PeriodicalId":384857,"journal":{"name":"International Journal of High Performance Computing and Networking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJHPCN.2016.10011433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an effective approach for recognising human actions from depth video sequences by employing depth motion maps (DMMs) and convolutional neural networks (CNNs). Depth maps are projected onto three orthogonal planes, and frame differences under each view (front/side/top) are then accumulated through an entire depth video sequence generating a DMM. We build a model architecture of multi-view convolutional neural network (MV-CNN) containing multiple networks to deal with three DMMs (DMMf, DMMs, DMMt). The output of full-connected layer under each view is integrated as feature representation, which is then learned in the last softmax regression layer to predict human actions. Experimental results on MSR-Action3D dataset and UTD-MHAD dataset indicate that the proposed approach achieves state-of-the-art recognition performance and is appropriate for real-time recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时人体动作识别使用深度运动地图和卷积神经网络
本文提出了一种利用深度运动图(dmm)和卷积神经网络(cnn)从深度视频序列中识别人类动作的有效方法。深度图被投影到三个正交的平面上,每个视图(正面/侧面/顶部)下的帧差然后通过生成DMM的整个深度视频序列累积。我们建立了一个包含多个网络的多视图卷积神经网络(MV-CNN)模型架构,以处理三种DMMf (DMMf, dmmm, DMMt)。每个视图下的全连接层的输出被集成为特征表示,然后在最后一个softmax回归层中学习,以预测人类的行为。在MSR-Action3D数据集和UTD-MHAD数据集上的实验结果表明,该方法具有较好的识别性能,适合于实时识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-supervised dimensionality reduction based on local estimation error Leveraging many simple statistical models to adaptively monitor software systems Queuing algorithm for speculative Network Processors MPI scalability of a large memory LES code Adaptive time/space sharing with SCOJO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1