Statistical Study of Anisotropic Proton Heating in Interplanetary Magnetic Switchbacks Measured by Parker Solar Probe

Qiaowen Luo, D. Duan, Jiansen He, Xingyu Zhu, D. Verscharen, J. Cui, H. Lai
{"title":"Statistical Study of Anisotropic Proton Heating in Interplanetary Magnetic Switchbacks Measured by Parker Solar Probe","authors":"Qiaowen Luo, D. Duan, Jiansen He, Xingyu Zhu, D. Verscharen, J. Cui, H. Lai","doi":"10.3847/2041-8213/acce9f","DOIUrl":null,"url":null,"abstract":"Magnetic switchbacks, which are large angular deflections of the interplanetary magnetic field, are frequently observed by Parker Solar Probe (PSP) in the inner heliosphere. Magnetic switchbacks are believed to play an important role in the heating of the solar corona and the solar wind as well as the acceleration of the solar wind in the inner heliosphere. Here, we analyze magnetic field data and plasma data measured by PSP during its second and fourth encounters, and select 71 switchback events with reversals of the radial component of the magnetic field at times of unchanged electron-strahl pitch angles. We investigate the anisotropic thermal kinetic properties of plasma during switchbacks in a statistical study of the measured proton temperatures in the parallel and perpendicular directions as well as proton density and specific proton fluid entropy. We apply the “genetic algorithm” method to directly fit the measured velocity distribution functions in field-aligned coordinates using a two-component bi-Maxwellian distribution function. We find that the protons in most switchback events are hotter than the ambient plasma outside the switchbacks, with characteristics of parallel and perpendicular heating. Specifically, significant parallel and perpendicular temperature increases are seen for 45 and 62 of the 71 events, respectively. We find that the density of most switchback events decreases rather than increases, which indicates that proton heating inside the switchbacks is not caused by adiabatic compression, but is probably generated by nonadiabatic heating caused by field–particle interactions. Accordingly, the proton fluid entropy is greater inside the switchbacks than in the ambient solar wind.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/acce9f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic switchbacks, which are large angular deflections of the interplanetary magnetic field, are frequently observed by Parker Solar Probe (PSP) in the inner heliosphere. Magnetic switchbacks are believed to play an important role in the heating of the solar corona and the solar wind as well as the acceleration of the solar wind in the inner heliosphere. Here, we analyze magnetic field data and plasma data measured by PSP during its second and fourth encounters, and select 71 switchback events with reversals of the radial component of the magnetic field at times of unchanged electron-strahl pitch angles. We investigate the anisotropic thermal kinetic properties of plasma during switchbacks in a statistical study of the measured proton temperatures in the parallel and perpendicular directions as well as proton density and specific proton fluid entropy. We apply the “genetic algorithm” method to directly fit the measured velocity distribution functions in field-aligned coordinates using a two-component bi-Maxwellian distribution function. We find that the protons in most switchback events are hotter than the ambient plasma outside the switchbacks, with characteristics of parallel and perpendicular heating. Specifically, significant parallel and perpendicular temperature increases are seen for 45 and 62 of the 71 events, respectively. We find that the density of most switchback events decreases rather than increases, which indicates that proton heating inside the switchbacks is not caused by adiabatic compression, but is probably generated by nonadiabatic heating caused by field–particle interactions. Accordingly, the proton fluid entropy is greater inside the switchbacks than in the ambient solar wind.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
帕克太阳探测器测量的行星际磁转换中各向异性质子加热的统计研究
帕克太阳探测器(PSP)在内日球层经常观测到行星际磁场的大角度偏转。磁转换被认为在日冕和太阳风的加热以及太阳风在内日球层的加速中起着重要作用。在这里,我们分析了PSP在第二次和第四次遭遇时的磁场数据和等离子体数据,并选择了71个在电子-strahl俯仰角不变时磁场径向分量反转的切换事件。通过对平行方向和垂直方向测量的质子温度以及质子密度和比质子流体熵的统计研究,研究了等离子体在切换过程中的各向异性热动力学特性。采用“遗传算法”方法,利用双分量双麦克斯韦分布函数直接拟合实测速度分布函数。我们发现,在大多数切换事件中,质子比切换外的环境等离子体更热,具有平行和垂直加热的特征。具体来说,在71次事件中,有45次和62次分别出现了显著的平行和垂直温度升高。我们发现大多数切换事件的密度不是增加而是减少,这表明切换内部的质子加热不是由绝热压缩引起的,而是由场-粒子相互作用引起的非绝热加热产生的。因此,质子流体熵在转换内部比在周围的太阳风中更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum: “Large Volcanic Event on Io Inferred from Jovian Sodium Nebula Brightening” (2019, ApJL, 871, L23) Voyager 1 Electron Densities in the Very Local Interstellar Medium to beyond 160 au Formation of Fan-spine Magnetic Topology through Flux Emergence and Subsequent Jet Production The First Robust Evidence Showing a Dark Matter Density Spike Around the Supermassive Black Hole in OJ 287 Evidence for a Redshifted Excess in the Intracluster Light Fractions of Merging Clusters at z ∼ 0.8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1