Optimizing classification techniques using Genetic Programming approach

Mohammad Hussein Saraee, Razieh Sadat Sadjady
{"title":"Optimizing classification techniques using Genetic Programming approach","authors":"Mohammad Hussein Saraee, Razieh Sadat Sadjady","doi":"10.1109/INMIC.2008.4777761","DOIUrl":null,"url":null,"abstract":"Genetic programming (GP) is a branch of genetic algorithms (GA) that searches for the best operation or computer program in search space of operations. At the same time classification is a data mining technique used to build model of data classes which can be used to predict future trends. In this paper GP has been employed for the implementation of the classification technique. GP properties can facilitate generating new and optimized classification rules that are not discovered by the existing traditional classification techniques. In addition we will show that GA approach is superior to traditional methods in regard to performance both on time and space requirements for processing.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Genetic programming (GP) is a branch of genetic algorithms (GA) that searches for the best operation or computer program in search space of operations. At the same time classification is a data mining technique used to build model of data classes which can be used to predict future trends. In this paper GP has been employed for the implementation of the classification technique. GP properties can facilitate generating new and optimized classification rules that are not discovered by the existing traditional classification techniques. In addition we will show that GA approach is superior to traditional methods in regard to performance both on time and space requirements for processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遗传规划方法优化分类技术
遗传规划(Genetic programming, GP)是遗传算法(Genetic algorithm, GA)的一个分支,它在操作的搜索空间中寻找最优的操作或计算机程序。同时,分类是一种数据挖掘技术,用于建立数据类模型,用于预测未来趋势。本文采用GP来实现分类技术。GP属性有助于生成新的和优化的分类规则,这些规则是现有传统分类技术无法发现的。此外,我们将证明遗传算法在处理的时间和空间要求方面优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nano particles on semiconductor manufacturing Graphical modeling and optimization of air interface standards for Software Defined Radios Per Packet Authentication for IEEE 802.11 wireless LAN An intelligent agri-information dissemination framework: An e-Government Characterization of waveguide slots using full wave EM analysis software HFSS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1