Metric Data Analysis Enhanced through Temporal Visualization

Renato Bueno, H. Razente, D. S. Kaster, M. Barioni, A. Traina, C. Traina
{"title":"Metric Data Analysis Enhanced through Temporal Visualization","authors":"Renato Bueno, H. Razente, D. S. Kaster, M. Barioni, A. Traina, C. Traina","doi":"10.1109/IV.2010.26","DOIUrl":null,"url":null,"abstract":"The human vision can naturally interpret data in spaces of 2 or 3 dimensions. When data is in higher dimensional spaces, in most cases the visualization is not intuitive. Regarding metric spaces, the interpretation is even harder, since they often do not have a direct spatial representation. However, the need to analyze how metric-represented data evolve over time is pretty common when one needs to understand several phenomena and in decision making processes, as it occurs in medical and agrometeorological applications. This paper presents three interactive techniques to visualize metric data that vary over time. Each one focus on a different way to interpret the temporal information. The first technique shows data evolving in a timeline axis. The second overlaps evolving snapshots of the space showing how the space varies regarding time. The last one does not treat temporal data as a dimension, it is used instead to define the similarity among complex data, employing the new concept of metric-temporal spaces, which seamlessly integrate time and metric data into a single similarity space. Visualization examples with real datasets are presented to show the usefulness of the proposed techniques.","PeriodicalId":328464,"journal":{"name":"2010 14th International Conference Information Visualisation","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 14th International Conference Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2010.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The human vision can naturally interpret data in spaces of 2 or 3 dimensions. When data is in higher dimensional spaces, in most cases the visualization is not intuitive. Regarding metric spaces, the interpretation is even harder, since they often do not have a direct spatial representation. However, the need to analyze how metric-represented data evolve over time is pretty common when one needs to understand several phenomena and in decision making processes, as it occurs in medical and agrometeorological applications. This paper presents three interactive techniques to visualize metric data that vary over time. Each one focus on a different way to interpret the temporal information. The first technique shows data evolving in a timeline axis. The second overlaps evolving snapshots of the space showing how the space varies regarding time. The last one does not treat temporal data as a dimension, it is used instead to define the similarity among complex data, employing the new concept of metric-temporal spaces, which seamlessly integrate time and metric data into a single similarity space. Visualization examples with real datasets are presented to show the usefulness of the proposed techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过时间可视化增强度量数据分析
人类的视觉可以自然地解释二维或三维空间中的数据。当数据处于高维空间时,大多数情况下可视化并不直观。对于度量空间,解释就更难了,因为它们通常没有直接的空间表示。然而,在需要理解若干现象和决策过程时,分析度量表示的数据如何随时间演变的需求非常普遍,就像在医疗和农业气象应用中发生的那样。本文提出了三种交互技术来可视化随时间变化的度量数据。每一个都侧重于不同的方式来解释时间信息。第一种技术显示数据在时间轴上的演变。第二个重叠空间的演化快照,显示空间如何随时间变化。最后一种方法不将时间数据作为一个维度,而是使用度量-时间空间的新概念来定义复杂数据之间的相似性,将时间和度量数据无缝地集成到一个相似空间中。通过实际数据集的可视化示例来展示所提出技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-automatic Generation of GUIs for RDF Browsing Swedish Road Weather Visualization Visualization of Multi-sensory Meeting Information to Support Awareness Visual Intention in Moving Image Editing and Eye-Tracking Methodology. An Exploratory Study Combining Visual Analytics and Content Based Data Retrieval Technology for Efficient Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1