Baojun Zhang, Zemin Wang, J. An, Tingting Liu, H. Geng
{"title":"A 30 year monthly 5 km gridded surface elevation time series for the Greenland Ice Sheet from multiple satellite radar altimeters","authors":"Baojun Zhang, Zemin Wang, J. An, Tingting Liu, H. Geng","doi":"10.5194/essd-2021-293","DOIUrl":null,"url":null,"abstract":"Abstract. A long-term time series of ice sheet surface elevation change (SEC) is important for study of ice sheet variation and its response to climate change. In this study, we used an updated plane-fitting least-squares regression strategy to generate a 30 year surface elevation time series for the Greenland Ice Sheet (GrIS) at monthly temporal resolution and 5 × 5 km grid spatial resolution using ERS‐1, ERS‐2, Envisat, and CryoSat‐2 satellite radar altimeter observations obtained between August 1991 and December 2020. The accuracy and reliability of the time series are effectively guaranteed by application of sophisticated corrections for intermission bias and interpolation based on empirical orthogonal function reconstruction. Validation using both airborne laser altimeter observations and the European Space Agency GrIS Climate Change Initiative (CCI) product indicated that our merged surface elevation time series is reliable. The accuracy and dispersion of errors of SECs of our results were 19.3 % and 8.9 % higher, respectively, than those of CCI SECs, and even 30.9 % and 19.0 % higher, respectively, in periods from 2006–2010 to 2010–2014. Further analysis showed that our merged time series could provide detailed insight into GrIS SEC on multiple temporal (up to 30 years) and spatial scales, thereby providing opportunity to explore potential associations between ice sheet change and climatic forcing. The merged surface elevation time series data are available at http://dx.doi.org/10.11888/Glacio.tpdc.271658 (Zhang et al., 2021).\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2021-293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract. A long-term time series of ice sheet surface elevation change (SEC) is important for study of ice sheet variation and its response to climate change. In this study, we used an updated plane-fitting least-squares regression strategy to generate a 30 year surface elevation time series for the Greenland Ice Sheet (GrIS) at monthly temporal resolution and 5 × 5 km grid spatial resolution using ERS‐1, ERS‐2, Envisat, and CryoSat‐2 satellite radar altimeter observations obtained between August 1991 and December 2020. The accuracy and reliability of the time series are effectively guaranteed by application of sophisticated corrections for intermission bias and interpolation based on empirical orthogonal function reconstruction. Validation using both airborne laser altimeter observations and the European Space Agency GrIS Climate Change Initiative (CCI) product indicated that our merged surface elevation time series is reliable. The accuracy and dispersion of errors of SECs of our results were 19.3 % and 8.9 % higher, respectively, than those of CCI SECs, and even 30.9 % and 19.0 % higher, respectively, in periods from 2006–2010 to 2010–2014. Further analysis showed that our merged time series could provide detailed insight into GrIS SEC on multiple temporal (up to 30 years) and spatial scales, thereby providing opportunity to explore potential associations between ice sheet change and climatic forcing. The merged surface elevation time series data are available at http://dx.doi.org/10.11888/Glacio.tpdc.271658 (Zhang et al., 2021).