A 30 year monthly 5 km gridded surface elevation time series for the Greenland Ice Sheet from multiple satellite radar altimeters

Baojun Zhang, Zemin Wang, J. An, Tingting Liu, H. Geng
{"title":"A 30 year monthly 5 km gridded surface elevation time series for the Greenland Ice Sheet from multiple satellite radar altimeters","authors":"Baojun Zhang, Zemin Wang, J. An, Tingting Liu, H. Geng","doi":"10.5194/essd-2021-293","DOIUrl":null,"url":null,"abstract":"Abstract. A long-term time series of ice sheet surface elevation change (SEC) is important for study of ice sheet variation and its response to climate change. In this study, we used an updated plane-fitting least-squares regression strategy to generate a 30 year surface elevation time series for the Greenland Ice Sheet (GrIS) at monthly temporal resolution and 5 × 5 km grid spatial resolution using ERS‐1, ERS‐2, Envisat, and CryoSat‐2 satellite radar altimeter observations obtained between August 1991 and December 2020. The accuracy and reliability of the time series are effectively guaranteed by application of sophisticated corrections for intermission bias and interpolation based on empirical orthogonal function reconstruction. Validation using both airborne laser altimeter observations and the European Space Agency GrIS Climate Change Initiative (CCI) product indicated that our merged surface elevation time series is reliable. The accuracy and dispersion of errors of SECs of our results were 19.3 % and 8.9 % higher, respectively, than those of CCI SECs, and even 30.9 % and 19.0 % higher, respectively, in periods from 2006–2010 to 2010–2014. Further analysis showed that our merged time series could provide detailed insight into GrIS SEC on multiple temporal (up to 30 years) and spatial scales, thereby providing opportunity to explore potential associations between ice sheet change and climatic forcing. The merged surface elevation time series data are available at http://dx.doi.org/10.11888/Glacio.tpdc.271658 (Zhang et al., 2021).\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2021-293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. A long-term time series of ice sheet surface elevation change (SEC) is important for study of ice sheet variation and its response to climate change. In this study, we used an updated plane-fitting least-squares regression strategy to generate a 30 year surface elevation time series for the Greenland Ice Sheet (GrIS) at monthly temporal resolution and 5 × 5 km grid spatial resolution using ERS‐1, ERS‐2, Envisat, and CryoSat‐2 satellite radar altimeter observations obtained between August 1991 and December 2020. The accuracy and reliability of the time series are effectively guaranteed by application of sophisticated corrections for intermission bias and interpolation based on empirical orthogonal function reconstruction. Validation using both airborne laser altimeter observations and the European Space Agency GrIS Climate Change Initiative (CCI) product indicated that our merged surface elevation time series is reliable. The accuracy and dispersion of errors of SECs of our results were 19.3 % and 8.9 % higher, respectively, than those of CCI SECs, and even 30.9 % and 19.0 % higher, respectively, in periods from 2006–2010 to 2010–2014. Further analysis showed that our merged time series could provide detailed insight into GrIS SEC on multiple temporal (up to 30 years) and spatial scales, thereby providing opportunity to explore potential associations between ice sheet change and climatic forcing. The merged surface elevation time series data are available at http://dx.doi.org/10.11888/Glacio.tpdc.271658 (Zhang et al., 2021).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多个卫星雷达高度计的格陵兰冰盖30年每月5公里网格化地表高程时间序列
摘要冰盖表面高程变化(SEC)的长期时间序列对于研究冰盖变化及其对气候变化的响应具有重要意义。在这项研究中,我们使用更新的平面拟合最小二乘回归策略,利用1991年8月至2020年12月期间获得的ERS‐1、ERS‐2、Envisat和CryoSat‐2卫星雷达高度计观测数据,以月时间分辨率和5 × 5 km网格空间分辨率生成了格陵兰冰盖(GrIS)的30年地表高程时间序列。采用基于经验正交函数重构的复杂的间隔偏差校正和插值,有效地保证了时间序列的准确性和可靠性。使用机载激光高度计观测和欧洲航天局GrIS气候变化倡议(CCI)产品的验证表明,我们合并的地表高程时间序列是可靠的。在2006-2010年至2010-2014年期间,我们的结果的SECs的准确度和误差离散度分别比CCI SECs高19.3%和8.9%,甚至比CCI SECs高30.9%和19.0%。进一步分析表明,我们合并的时间序列可以在多个时间(长达30年)和空间尺度上详细了解GrIS SEC,从而为探索冰盖变化与气候强迫之间的潜在关联提供了机会。合并后的地表高程时间序列数据可在http://dx.doi.org/10.11888/Glacio.tpdc.271658获取(Zhang et al., 2021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea LGHAP: a Long-term Gap-free High-resolution Air Pollutants concentration dataset derived via tensor flow based multimodal data fusion Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries Last Interglacial sea-level data points from Northwest Europe A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1