Simplified stochastic gradient adaptive filters using partial updating

S. Douglas
{"title":"Simplified stochastic gradient adaptive filters using partial updating","authors":"S. Douglas","doi":"10.1109/DSP.1994.379826","DOIUrl":null,"url":null,"abstract":"In some adaptive filtering applications, the least-mean-square (LMS) algorithm may be too computationally- and memory-intensive to implement. The authors present two adaptive algorithms that update only a portion of the coefficients of the adaptive system on average. These algorithms use a decimated version of the regressor vector signal and thus are particularly suited to filtered-regressor algorithms used in infinite-impulse-response (IIR) filtering and active noise control applications. The authors provide statistical analyses and simulations of these algorithms that indicate that their behavior with stationary random input signals is similar to that of a periodic update version of the LMS adaptive algorithm. The robustness of the proposed algorithms for periodic inputs is also discussed.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"77 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In some adaptive filtering applications, the least-mean-square (LMS) algorithm may be too computationally- and memory-intensive to implement. The authors present two adaptive algorithms that update only a portion of the coefficients of the adaptive system on average. These algorithms use a decimated version of the regressor vector signal and thus are particularly suited to filtered-regressor algorithms used in infinite-impulse-response (IIR) filtering and active noise control applications. The authors provide statistical analyses and simulations of these algorithms that indicate that their behavior with stationary random input signals is similar to that of a periodic update version of the LMS adaptive algorithm. The robustness of the proposed algorithms for periodic inputs is also discussed.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用部分更新的简化随机梯度自适应滤波器
在一些自适应滤波应用程序中,最小均方(LMS)算法可能过于计算和内存密集而无法实现。提出了两种平均只更新部分自适应系统系数的自适应算法。这些算法使用回归量矢量信号的抽取版本,因此特别适合用于无限脉冲响应(IIR)滤波和主动噪声控制应用中的滤波回归量算法。作者提供了这些算法的统计分析和模拟,表明它们在平稳随机输入信号下的行为类似于LMS自适应算法的周期性更新版本。本文还讨论了所提算法对周期性输入的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching DSP using Matlab Orthogonalization of Gaussian signals for Volterra system identification Filter design to guarantee convergence of the pseudolinear regression IIR adaptive algorithm Separation of co-channel FM/PM signals using the discrete polynomial-phase transform Decorrelation algorithm for blind decision feedback equalizer with lattice structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1