Anomaly Detection for Non-Stationary and Non-Periodic Univariate Time Series

Yu-Lin Li, Jehn-Ruey Jiang
{"title":"Anomaly Detection for Non-Stationary and Non-Periodic Univariate Time Series","authors":"Yu-Lin Li, Jehn-Ruey Jiang","doi":"10.1109/ECICE50847.2020.9301943","DOIUrl":null,"url":null,"abstract":"This study proposes an anomaly detection method called wavelet autoencoder anomaly detection (WAAD) for non-stationary and non-periodic univariate time series. The method first applies discrete wavelet transform to time series of a sliding time window to obtain wavelet transform coefficients. It then uses an autoencoder to encode and decode (reconstruct) these coefficients. WAAD calculates the reconstruction error for every time window. An anomaly is assumed to occur for specific conditions of the errors. By five NAB datasets, the performance of WAAD is evaluated and compared with other methods to show its superiority.","PeriodicalId":130143,"journal":{"name":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE50847.2020.9301943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This study proposes an anomaly detection method called wavelet autoencoder anomaly detection (WAAD) for non-stationary and non-periodic univariate time series. The method first applies discrete wavelet transform to time series of a sliding time window to obtain wavelet transform coefficients. It then uses an autoencoder to encode and decode (reconstruct) these coefficients. WAAD calculates the reconstruction error for every time window. An anomaly is assumed to occur for specific conditions of the errors. By five NAB datasets, the performance of WAAD is evaluated and compared with other methods to show its superiority.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平稳非周期单变量时间序列的异常检测
针对非平稳非周期单变量时间序列,提出了一种小波自编码器异常检测(WAAD)方法。该方法首先对滑动时间窗的时间序列进行离散小波变换,得到小波变换系数;然后使用自动编码器对这些系数进行编码和解码(重构)。WAAD计算每个时间窗口的重构误差。假定在错误的特定条件下会发生异常。通过5个NAB数据集,对WAAD的性能进行了评价,并与其他方法进行了比较,显示了WAAD的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Cameras and Algorithms for Multi-Angle Gripping and Control of Robotic Arm Real-Time Interaction System of Human-Robot with Hand Gestures A Smart Simulation System for Manufacturing Common Management Technology of Automation Equipment in Industry 4.0 Factors Affecting Location of Nasal Airway Obstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1