Harmonic estimation using Modified ADALINE algorithm with Time-Variant Widrow — Hoff (TVWH) learning rule

B. Vasumathi, S. Moorthi
{"title":"Harmonic estimation using Modified ADALINE algorithm with Time-Variant Widrow — Hoff (TVWH) learning rule","authors":"B. Vasumathi, S. Moorthi","doi":"10.1109/ISCI.2011.5958894","DOIUrl":null,"url":null,"abstract":"Algorithms are well developed for adaptive estimation of selected harmonic components in Digital Signal Processing. In power electronic applications, objectives like fast response of a system is of primary importance. An effective active power filtering for estimation of instantaneous harmonic components is presented in this paper. A signal processing technique using Modified Adaptive Neural Network (Modified ANN) algorithm has been proposed for harmonic estimation. Its primary function is to estimate harmonic components from selected signal (Current or Voltage) and it requires only the knowledge of the frequency of the component to be estimated. This method can be applied to a wide range of equipments. The validity of the proposed method to estimate voltage harmonics is proved with a dc/ac inverter as an example and the simulation results are compared with ADALINE algorithm for illustrating its effectiveness.","PeriodicalId":166647,"journal":{"name":"2011 IEEE Symposium on Computers & Informatics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computers & Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCI.2011.5958894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Algorithms are well developed for adaptive estimation of selected harmonic components in Digital Signal Processing. In power electronic applications, objectives like fast response of a system is of primary importance. An effective active power filtering for estimation of instantaneous harmonic components is presented in this paper. A signal processing technique using Modified Adaptive Neural Network (Modified ANN) algorithm has been proposed for harmonic estimation. Its primary function is to estimate harmonic components from selected signal (Current or Voltage) and it requires only the knowledge of the frequency of the component to be estimated. This method can be applied to a wide range of equipments. The validity of the proposed method to estimate voltage harmonics is proved with a dc/ac inverter as an example and the simulation results are compared with ADALINE algorithm for illustrating its effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时变Widrow - Hoff (TVWH)学习规则的改进ADALINE算法的谐波估计
在数字信号处理中,谐波分量的自适应估计算法已经得到了很好的发展。在电力电子应用中,系统的快速响应等目标是至关重要的。本文提出了一种有效的电力有源滤波器,用于估计瞬时谐波分量。提出了一种利用改进自适应神经网络(Modified ANN)算法进行谐波估计的信号处理技术。它的主要功能是从选定的信号(电流或电压)中估计谐波分量,它只需要知道要估计的分量的频率。该方法适用于各种设备。以直流/交流逆变器为例,验证了该方法估计电压谐波的有效性,并将仿真结果与ADALINE算法进行了比较,说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural networks with NARX structure for material lifetime assessment application Detecting emotion from voice using selective Bayesian pairwise classifiers Current-controlled current-mode multiphase oscillator using CCCDTAs The process of quality assurance under open source software development A modified planar monopole antenna for UWB applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1