A. Nikulin, R. Dilanian, B. M. Gable, B. C. Muddle, J. Hester, T. Ishikawa, P. Yang, H. Moser
{"title":"Nondestructive three-dimensional x-ray diffraction imaging of nanoscale particles","authors":"A. Nikulin, R. Dilanian, B. M. Gable, B. C. Muddle, J. Hester, T. Ishikawa, P. Yang, H. Moser","doi":"10.1142/S1793617908000276","DOIUrl":null,"url":null,"abstract":"We report a novel approach to X-ray diffraction data analysis for nondestructive determination of the shape of nanoscale particles and clusters in three dimensions with a spatial resolution of a few nanometers. The advantage of the proposed approach is that it does not require a coherent X-ray source and therefore is suitable for almost any synchrotron radiation beamline and many laboratory sources. The technique is insensitive to the coherence of the X-rays, and 3D reconstruction of a modal image is possible without tomographic synthesis, rendering the approach suitable for laboratory facilities. Successful application of the technique to the characterization of nanoparticulate in a range of dispersed-phase nanocomposite structures illustrates this novel approach.","PeriodicalId":166807,"journal":{"name":"Advances in Synchrotron Radiation","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Synchrotron Radiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793617908000276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We report a novel approach to X-ray diffraction data analysis for nondestructive determination of the shape of nanoscale particles and clusters in three dimensions with a spatial resolution of a few nanometers. The advantage of the proposed approach is that it does not require a coherent X-ray source and therefore is suitable for almost any synchrotron radiation beamline and many laboratory sources. The technique is insensitive to the coherence of the X-rays, and 3D reconstruction of a modal image is possible without tomographic synthesis, rendering the approach suitable for laboratory facilities. Successful application of the technique to the characterization of nanoparticulate in a range of dispersed-phase nanocomposite structures illustrates this novel approach.