Unsupervised segmentation for automatic detection of brain tumors in MRI

A. Capelle-Laizé, O. Alata, C. Fernandez, S. Lefèvre, J. Ferrie
{"title":"Unsupervised segmentation for automatic detection of brain tumors in MRI","authors":"A. Capelle-Laizé, O. Alata, C. Fernandez, S. Lefèvre, J. Ferrie","doi":"10.1109/ICIP.2000.901033","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new automatic segmentation method for magnetic resonance images. The aim of this segmentation is to divide the brain into homogeneous regions and to detect the presence of tumors. Our method is divided into two parts. First, we make a pre-segmentation to extract the brain from the head. Then, a second segmentation is done inside the brain. Several techniques are combined like anisotropic filtering or stochastic model-based segmentation during the two processes. The paper describes the main features of the method, and gives some segmentation results.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.901033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

In this paper, we present a new automatic segmentation method for magnetic resonance images. The aim of this segmentation is to divide the brain into homogeneous regions and to detect the presence of tumors. Our method is divided into two parts. First, we make a pre-segmentation to extract the brain from the head. Then, a second segmentation is done inside the brain. Several techniques are combined like anisotropic filtering or stochastic model-based segmentation during the two processes. The paper describes the main features of the method, and gives some segmentation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI中自动检测脑肿瘤的无监督分割
本文提出了一种新的磁共振图像自动分割方法。这种分割的目的是将大脑划分为均匀的区域,并检测肿瘤的存在。我们的方法分为两部分。首先,我们进行预分割,从头部中提取大脑。然后,在大脑内部进行第二次分割。在这两个过程中结合了各向异性滤波或基于随机模型的分割等技术。本文介绍了该方法的主要特点,并给出了一些分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust shape tracking in the presence of cluttered background Symmetric region growing Joint halftoning and watermarking A deformable template model based on fuzzy alignment algorithm Region-based scanning for image compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1