ISAR image visualization for aerospace targets

Yang Liu, Gang Li, Si Shi, Chi Zhang, Bingning Li
{"title":"ISAR image visualization for aerospace targets","authors":"Yang Liu, Gang Li, Si Shi, Chi Zhang, Bingning Li","doi":"10.1117/12.2538204","DOIUrl":null,"url":null,"abstract":"Due to the large dynamic range and low contrast, inverse synthetic aperture radar (ISAR) image is not appropriate for human observation. In order to output and display the target imaging results, a procedure which compresses the dynamic range of the raw images into a lower range is necessary. In this paper, by analyzing the histogram of original ISAR images, the characteristics of ISAR images are investigated. Given the sparse amplitude distribution of original ISAR image and the shortcomings existing in the sparse linear histogram, this paper proposes an ISAR image detail enhancement algorithm (ISARIDE) based on histogram equalization and dynamic range compression. The advantage of the proposed method is that it can retain the target structure information, and improve the visual effect of human eye to target details as soon as possible. The proposed algorithm was tested on the simulated data and real data. The selected target is a flying Boeing 737-800.The results show the validity of the algorithm.","PeriodicalId":384253,"journal":{"name":"International Symposium on Multispectral Image Processing and Pattern Recognition","volume":"11428 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Multispectral Image Processing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2538204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the large dynamic range and low contrast, inverse synthetic aperture radar (ISAR) image is not appropriate for human observation. In order to output and display the target imaging results, a procedure which compresses the dynamic range of the raw images into a lower range is necessary. In this paper, by analyzing the histogram of original ISAR images, the characteristics of ISAR images are investigated. Given the sparse amplitude distribution of original ISAR image and the shortcomings existing in the sparse linear histogram, this paper proposes an ISAR image detail enhancement algorithm (ISARIDE) based on histogram equalization and dynamic range compression. The advantage of the proposed method is that it can retain the target structure information, and improve the visual effect of human eye to target details as soon as possible. The proposed algorithm was tested on the simulated data and real data. The selected target is a flying Boeing 737-800.The results show the validity of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向航天目标的ISAR图像可视化
逆合成孔径雷达(ISAR)图像由于动态范围大、对比度低,不适合人类观测。为了输出和显示目标成像结果,需要一个将原始图像的动态范围压缩到较低范围的程序。本文通过对原始ISAR图像的直方图分析,研究了ISAR图像的特征。针对原始ISAR图像幅值分布稀疏以及稀疏线性直方图存在的不足,提出了一种基于直方图均衡化和动态范围压缩的ISAR图像细节增强算法(ISARIDE)。该方法的优点是能够保留目标结构信息,提高人眼对目标细节的视觉效果。在仿真数据和实际数据上对该算法进行了验证。选定的目标是一架正在飞行的波音737-800。实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image fusion for multimodality image via domain transfer and nonrigid transformation Dimensionality reduction of hyperspectral images based on subspace combination clustering and adaptive band selection Remote multi-object detection based on bounding box field Facial morphe via domain translation and FM2RLS Restoration of haze-free images using generative adversarial network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1