Deep Neural Network-Based Scale Feature Model for BVI Detection and Principal Component Extraction

Lu Wang, Xiaorui Liu, Xiaoqing Hu, Luyang Guan, Ming Bao
{"title":"Deep Neural Network-Based Scale Feature Model for BVI Detection and Principal Component Extraction","authors":"Lu Wang, Xiaorui Liu, Xiaoqing Hu, Luyang Guan, Ming Bao","doi":"10.1145/3372806.3372813","DOIUrl":null,"url":null,"abstract":"The blade-vortex interaction (BVI) is a typical helicopter noise, and has received significant attentions in the fields of structural stealth and acoustic detection. In this paper, a hybrid scheme combining aerodynamic and acoustic analysis based on the deep neural network (DNN) is proposed to achieve a better understanding of the BVI. Meanwhile, the DNN-based scale feature model (DNN-SFM) is constructed to describe the end-to-end relationship between the aero-acoustic parameters of the BVI signal and the optimal wavelet scale feature by the MZ-discrete wavelet transform. Two novel methods based on DNN-SFM are proposed for the BVI signal detection and principal component extraction, which effectively reduces the time complexity and improves the robustness in a variety of noisy environments compared to traditional algorithms. The extensive experiments on simulated and realistic data verify the effectiveness of our methods.","PeriodicalId":340004,"journal":{"name":"International Conference on Signal Processing and Machine Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372806.3372813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The blade-vortex interaction (BVI) is a typical helicopter noise, and has received significant attentions in the fields of structural stealth and acoustic detection. In this paper, a hybrid scheme combining aerodynamic and acoustic analysis based on the deep neural network (DNN) is proposed to achieve a better understanding of the BVI. Meanwhile, the DNN-based scale feature model (DNN-SFM) is constructed to describe the end-to-end relationship between the aero-acoustic parameters of the BVI signal and the optimal wavelet scale feature by the MZ-discrete wavelet transform. Two novel methods based on DNN-SFM are proposed for the BVI signal detection and principal component extraction, which effectively reduces the time complexity and improves the robustness in a variety of noisy environments compared to traditional algorithms. The extensive experiments on simulated and realistic data verify the effectiveness of our methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的BVI检测及主成分提取尺度特征模型
叶片涡相互作用(BVI)是一种典型的直升机噪声,在结构隐身和声探测领域受到广泛关注。为了更好地理解英属维尔京群岛,本文提出了一种基于深度神经网络(DNN)的空气动力学和声学分析相结合的混合方案。同时,通过mz -离散小波变换,构建基于dnn的尺度特征模型(DNN-SFM)来描述BVI信号的气动声学参数与最优小波尺度特征之间的端到端关系。提出了两种基于DNN-SFM的BVI信号检测和主成分提取新方法,与传统算法相比,有效降低了时间复杂度,提高了在各种噪声环境下的鲁棒性。大量的模拟和真实数据实验验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-source Radar Data Fusion via Support Vector Regression Data Link Modeling and Simulation Based on DEVS Implement AI Service into VR Training Automated Detection of Sewer Pipe Defects Based on Cost-Sensitive Convolutional Neural Network Multi-Scale Deep Convolutional Nets with Attention Model and Conditional Random Fields for Semantic Image Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1