{"title":"Anti-monotonic Overlap-Graph Support Measures","authors":"T. Calders, J. Ramon, D. V. Dyck","doi":"10.1109/ICDM.2008.114","DOIUrl":null,"url":null,"abstract":"In graph mining, a frequency measure is anti-monotonic if the frequency of a pattern never exceeds the frequency of a subpattern. The efficiency and correctness of most graph pattern miners relies critically on this property. We study the case where the dataset is a single graph. Vanetik, Gudes and Shimony already gave sufficient and necessary conditions for anti-monotonicity of measures depending only on the edge-overlaps between the instances of the pattern in a labeled graph. We extend these results to homomorphisms, isomorphisms and homeomorphisms on both labeled and unlabeled, directed and undirected graphs, for vertex and edge overlap. We show a set of reductions between the different morphisms that preserve overlap. We also prove that the popular maximum independent set measure assigns the minimal possible meaningful frequency, introduce a new measure based on the minimum clique partition that assigns the maximum possible meaningful frequency and introduce a new measure sandwiched between the former two based on the poly-time computable Lovasz thetas-function.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
In graph mining, a frequency measure is anti-monotonic if the frequency of a pattern never exceeds the frequency of a subpattern. The efficiency and correctness of most graph pattern miners relies critically on this property. We study the case where the dataset is a single graph. Vanetik, Gudes and Shimony already gave sufficient and necessary conditions for anti-monotonicity of measures depending only on the edge-overlaps between the instances of the pattern in a labeled graph. We extend these results to homomorphisms, isomorphisms and homeomorphisms on both labeled and unlabeled, directed and undirected graphs, for vertex and edge overlap. We show a set of reductions between the different morphisms that preserve overlap. We also prove that the popular maximum independent set measure assigns the minimal possible meaningful frequency, introduce a new measure based on the minimum clique partition that assigns the maximum possible meaningful frequency and introduce a new measure sandwiched between the former two based on the poly-time computable Lovasz thetas-function.