Anti-monotonic Overlap-Graph Support Measures

T. Calders, J. Ramon, D. V. Dyck
{"title":"Anti-monotonic Overlap-Graph Support Measures","authors":"T. Calders, J. Ramon, D. V. Dyck","doi":"10.1109/ICDM.2008.114","DOIUrl":null,"url":null,"abstract":"In graph mining, a frequency measure is anti-monotonic if the frequency of a pattern never exceeds the frequency of a subpattern. The efficiency and correctness of most graph pattern miners relies critically on this property. We study the case where the dataset is a single graph. Vanetik, Gudes and Shimony already gave sufficient and necessary conditions for anti-monotonicity of measures depending only on the edge-overlaps between the instances of the pattern in a labeled graph. We extend these results to homomorphisms, isomorphisms and homeomorphisms on both labeled and unlabeled, directed and undirected graphs, for vertex and edge overlap. We show a set of reductions between the different morphisms that preserve overlap. We also prove that the popular maximum independent set measure assigns the minimal possible meaningful frequency, introduce a new measure based on the minimum clique partition that assigns the maximum possible meaningful frequency and introduce a new measure sandwiched between the former two based on the poly-time computable Lovasz thetas-function.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In graph mining, a frequency measure is anti-monotonic if the frequency of a pattern never exceeds the frequency of a subpattern. The efficiency and correctness of most graph pattern miners relies critically on this property. We study the case where the dataset is a single graph. Vanetik, Gudes and Shimony already gave sufficient and necessary conditions for anti-monotonicity of measures depending only on the edge-overlaps between the instances of the pattern in a labeled graph. We extend these results to homomorphisms, isomorphisms and homeomorphisms on both labeled and unlabeled, directed and undirected graphs, for vertex and edge overlap. We show a set of reductions between the different morphisms that preserve overlap. We also prove that the popular maximum independent set measure assigns the minimal possible meaningful frequency, introduce a new measure based on the minimum clique partition that assigns the maximum possible meaningful frequency and introduce a new measure sandwiched between the former two based on the poly-time computable Lovasz thetas-function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反单调重叠图的支持措施
在图挖掘中,如果模式的频率从不超过子模式的频率,则频率度量是反单调的。大多数图模式挖掘器的效率和正确性主要依赖于这一特性。我们研究数据集是单个图的情况。Vanetik, Gudes和Shimony已经给出了仅依赖于标记图中模式实例之间的边重叠的测度的反单调性的充要条件。我们将这些结果推广到有标记图和无标记图,有向图和无向图上的同态、同构和同胚,对于顶点和边缘重叠。我们展示了一组保留重叠的不同多态性之间的还原。我们还证明了常用的最大独立集测度分配了最小可能有意义频率,引入了一种基于最小团划分分配最大可能有意义频率的新测度,并引入了一种夹在前两者之间的基于多时间可计算Lovasz - thetas函数的新测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1