{"title":"A ZPPNP[1] Lifting Theorem","authors":"Thomas Watson","doi":"10.1145/3428673","DOIUrl":null,"url":null,"abstract":"The complexity class ZPPNP[1] (corresponding to zero-error randomized algorithms with access to one NP oracle query) is known to have a number of curious properties. We further explore this class in the settings of time complexity, query complexity, and communication complexity. • For starters, we provide a new characterization: ZPPNP[1] equals the restriction of BPPNP[1] where the algorithm is only allowed to err when it forgoes the opportunity to make an NP oracle query. • Using the above characterization, we prove a query-to-communication lifting theorem, which translates any ZPPNP[1] decision tree lower bound for a function f into a ZPPNP[1] communication lower bound for a two-party version of f. • As an application, we use the above lifting theorem to prove that the ZPPNP[1] communication lower bound technique introduced by Göös, Pitassi, and Watson (ICALP 2016) is not tight. We also provide a “primal” characterization of this lower bound technique as a complexity class.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3428673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The complexity class ZPPNP[1] (corresponding to zero-error randomized algorithms with access to one NP oracle query) is known to have a number of curious properties. We further explore this class in the settings of time complexity, query complexity, and communication complexity. • For starters, we provide a new characterization: ZPPNP[1] equals the restriction of BPPNP[1] where the algorithm is only allowed to err when it forgoes the opportunity to make an NP oracle query. • Using the above characterization, we prove a query-to-communication lifting theorem, which translates any ZPPNP[1] decision tree lower bound for a function f into a ZPPNP[1] communication lower bound for a two-party version of f. • As an application, we use the above lifting theorem to prove that the ZPPNP[1] communication lower bound technique introduced by Göös, Pitassi, and Watson (ICALP 2016) is not tight. We also provide a “primal” characterization of this lower bound technique as a complexity class.