{"title":"Omnidirectionally balanced multiwavelets for vector wavelet transforms","authors":"J. Fowler, Li Hua","doi":"10.1109/DCC.2002.999982","DOIUrl":null,"url":null,"abstract":"Vector wavelet transforms for vector-valued fields can be implemented directly from multiwavelets; however, existing multiwavelets offer surprisingly poor performance for transforms in vector-valued signal-processing applications. In this paper, the reason for this performance failure is identified, and a remedy is proposed. A multiwavelet design criterion, omnidirectional balancing, is introduced to extend to vector transforms the balancing philosophy previously proposed for multiwavelet-based scalar-signal expansion. Additionally, a family of symmetric-antisymmetric multiwavelets is designed according to the omnidirectional-balancing criterion. In empirical results for a vector-field compression system, it is observed that the performance of vector wavelet transforms derived from these omnidirectionally-balanced symmetric-antisymmetric multiwavelets is far superior to that of transforms implemented via other multiwavelets.","PeriodicalId":420897,"journal":{"name":"Proceedings DCC 2002. Data Compression Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC 2002. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2002.999982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Vector wavelet transforms for vector-valued fields can be implemented directly from multiwavelets; however, existing multiwavelets offer surprisingly poor performance for transforms in vector-valued signal-processing applications. In this paper, the reason for this performance failure is identified, and a remedy is proposed. A multiwavelet design criterion, omnidirectional balancing, is introduced to extend to vector transforms the balancing philosophy previously proposed for multiwavelet-based scalar-signal expansion. Additionally, a family of symmetric-antisymmetric multiwavelets is designed according to the omnidirectional-balancing criterion. In empirical results for a vector-field compression system, it is observed that the performance of vector wavelet transforms derived from these omnidirectionally-balanced symmetric-antisymmetric multiwavelets is far superior to that of transforms implemented via other multiwavelets.