Penerapan Data Mining untuk Klasifikasi Penyakit Stroke Menggunakan Algoritma Naïve Bayes

Agus Fajar Riany, Gusmelia Testiana
{"title":"Penerapan Data Mining untuk Klasifikasi Penyakit Stroke Menggunakan Algoritma Naïve Bayes","authors":"Agus Fajar Riany, Gusmelia Testiana","doi":"10.33020/saintekom.v13i1.352","DOIUrl":null,"url":null,"abstract":"Stroke is a disturbance of brain function, both local and general, that occurs suddenly, progressively, and rapidly due to non-traumatic brain blood circulation disorders that lasts more than 24 hours or ends in death. Stroke is also one of the deadliest diseases in Indonesia. In this study, stroke data was used to explore new information or knowledge in it. The process of extracting new information from a set of data is known as data mining. Therefore, this research aims to classify data related to stroke using the Naïve Bayes algorithm to find out whether the patient has a stroke or not. There are 10 attributes that are included in the causes of stroke, among others, gender, age, history of hypertension, history of heart disease, marital status, type of work, type of residence, glucose level, body mass index and smoking status. The results showed that classification with the Naïve Bayes algorithm can be applied in classifying stroke data resulting in an accuracy value of 92.48% in the Good Classification category.","PeriodicalId":359182,"journal":{"name":"Jurnal SAINTEKOM","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal SAINTEKOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33020/saintekom.v13i1.352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Stroke is a disturbance of brain function, both local and general, that occurs suddenly, progressively, and rapidly due to non-traumatic brain blood circulation disorders that lasts more than 24 hours or ends in death. Stroke is also one of the deadliest diseases in Indonesia. In this study, stroke data was used to explore new information or knowledge in it. The process of extracting new information from a set of data is known as data mining. Therefore, this research aims to classify data related to stroke using the Naïve Bayes algorithm to find out whether the patient has a stroke or not. There are 10 attributes that are included in the causes of stroke, among others, gender, age, history of hypertension, history of heart disease, marital status, type of work, type of residence, glucose level, body mass index and smoking status. The results showed that classification with the Naïve Bayes algorithm can be applied in classifying stroke data resulting in an accuracy value of 92.48% in the Good Classification category.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中风是一种局部和全身性脑功能紊乱,由于非创伤性脑血液循环紊乱而突然、渐进和迅速发生,持续24小时以上或以死亡告终。中风也是印尼最致命的疾病之一。在这项研究中,中风数据被用来探索新的信息或知识。从一组数据中提取新信息的过程称为数据挖掘。因此,本研究旨在使用Naïve贝叶斯算法对中风相关数据进行分类,以确定患者是否患有中风。中风的病因包括10个属性,其中包括性别、年龄、高血压史、心脏病史、婚姻状况、工作类型、居住类型、血糖水平、体重指数和吸烟状况。结果表明,Naïve贝叶斯算法可用于对笔划数据进行分类,在良好分类类别中准确率达到92.48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Algoritma K-Means untuk Klasterisasi Produksi Budidaya Perikanan Provinsi Sulawesi Utara Implementasi Aplikasi Laporjalanku untuk Pemetaan dan Pelaporan Jalan Rusak di Wilayah Kota Tarakan Pengukuran Kematangan Keamanan Siber pada Perusahaan Teknologi Informasi dengan Framework Center for Internet Security Controls Klasifikasi Sentimen Terhadap Kualitas Aplikasi Bahan Ajar Digital Akademik Universitas Terbuka di Google Play Evaluasi Keamanan Teknologi Informasi Menggunakan Indeks Keamanan Informasi 5.0 dan ISO/EIC 27001:2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1