Energy-Efficient In-Memory Data Stores on Hybrid Memory Hierarchies

Ahmad Hassan, H. Vandierendonck, Dimitrios S. Nikolopoulos
{"title":"Energy-Efficient In-Memory Data Stores on Hybrid Memory Hierarchies","authors":"Ahmad Hassan, H. Vandierendonck, Dimitrios S. Nikolopoulos","doi":"10.1145/2771937.2771940","DOIUrl":null,"url":null,"abstract":"Increasingly large amounts of data are stored in main memory of data center servers. However, DRAM-based memory is an important consumer of energy and is unlikely to scale in the future. Various byte-addressable non-volatile memory (NVM) technologies promise high density and near-zero static energy, however they suffer from increased latency and increased dynamic energy consumption. This paper proposes to leverage a hybrid memory architecture, consisting of both DRAM and NVM, by novel, application-level data management policies that decide to place data on DRAM vs. NVM. We analyze modern column-oriented and key-value data stores and demonstrate the feasibility of application-level data management. Cycle-accurate simulation confirms that our methodology reduces the energy with least performance degradation as compared to the current state-of-the-art hardware or OS approaches. Moreover, we utilize our techniques to apportion DRAM and NVM memory sizes for these workloads.","PeriodicalId":267524,"journal":{"name":"Proceedings of the 11th International Workshop on Data Management on New Hardware","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2771937.2771940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Increasingly large amounts of data are stored in main memory of data center servers. However, DRAM-based memory is an important consumer of energy and is unlikely to scale in the future. Various byte-addressable non-volatile memory (NVM) technologies promise high density and near-zero static energy, however they suffer from increased latency and increased dynamic energy consumption. This paper proposes to leverage a hybrid memory architecture, consisting of both DRAM and NVM, by novel, application-level data management policies that decide to place data on DRAM vs. NVM. We analyze modern column-oriented and key-value data stores and demonstrate the feasibility of application-level data management. Cycle-accurate simulation confirms that our methodology reduces the energy with least performance degradation as compared to the current state-of-the-art hardware or OS approaches. Moreover, we utilize our techniques to apportion DRAM and NVM memory sizes for these workloads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合内存层次结构的高效内存数据存储
越来越多的数据存储在数据中心服务器的主存中。然而,基于dram的存储器是一个重要的能源消耗者,并且在未来不太可能扩展。各种字节可寻址非易失性存储器(NVM)技术承诺高密度和接近于零的静态能量,但是它们受到延迟增加和动态能耗增加的影响。本文提出利用由DRAM和NVM组成的混合内存架构,通过新颖的应用程序级数据管理策略决定将数据放在DRAM和NVM上。我们分析了现代面向列和键值数据存储,并演示了应用级数据管理的可行性。周期精确的模拟证实,与当前最先进的硬件或操作系统方法相比,我们的方法在减少能量的同时,性能下降最少。此外,我们利用我们的技术为这些工作负载分配DRAM和NVM内存大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward GPUs being mainstream in analytic processing: An initial argument using simple scan-aggregate queries Applying HTM to an OLTP System: No Free Lunch TLB misses: The Missing Issue of Adaptive Radix Tree? The Serial Safety Net: Efficient Concurrency Control on Modern Hardware Scaling the Memory Power Wall With DRAM-Aware Data Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1