C. Campos, G. R. Keller, V. Kreinovich, L. Longpré, François Modave, S. Starks, R. Torres
{"title":"The use of fuzzy measures as a data fusion tool in geographic information systems: case study","authors":"C. Campos, G. R. Keller, V. Kreinovich, L. Longpré, François Modave, S. Starks, R. Torres","doi":"10.1109/NAFIPS.2003.1226812","DOIUrl":null,"url":null,"abstract":"Geospatial databases generally consist of measurements related to points (or pixels in the case of raster data), lines, and polygons. In recent years, the size and complexity of these databases have increased significantly and they often contain duplicate records, i.e., two or more close records representing the same measurement result. In this paper, we use fuzzy measures to address the problem of detecting duplicates in a database consisting of point measurements. As a test case, we use a database of measurements of anomalies in the Earth's gravity field that we have compiled. We show that a natural duplicate deletion algorithm requires (in the worst case) quadratic time, and we propose a new asymptotically optimal O(n/spl middot/log(n)) algorithm. These algorithms have been successfully applied to gravity databases. We believe that they will prove to be useful when dealing with many other types of point data.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Geospatial databases generally consist of measurements related to points (or pixels in the case of raster data), lines, and polygons. In recent years, the size and complexity of these databases have increased significantly and they often contain duplicate records, i.e., two or more close records representing the same measurement result. In this paper, we use fuzzy measures to address the problem of detecting duplicates in a database consisting of point measurements. As a test case, we use a database of measurements of anomalies in the Earth's gravity field that we have compiled. We show that a natural duplicate deletion algorithm requires (in the worst case) quadratic time, and we propose a new asymptotically optimal O(n/spl middot/log(n)) algorithm. These algorithms have been successfully applied to gravity databases. We believe that they will prove to be useful when dealing with many other types of point data.