The use of fuzzy measures as a data fusion tool in geographic information systems: case study

C. Campos, G. R. Keller, V. Kreinovich, L. Longpré, François Modave, S. Starks, R. Torres
{"title":"The use of fuzzy measures as a data fusion tool in geographic information systems: case study","authors":"C. Campos, G. R. Keller, V. Kreinovich, L. Longpré, François Modave, S. Starks, R. Torres","doi":"10.1109/NAFIPS.2003.1226812","DOIUrl":null,"url":null,"abstract":"Geospatial databases generally consist of measurements related to points (or pixels in the case of raster data), lines, and polygons. In recent years, the size and complexity of these databases have increased significantly and they often contain duplicate records, i.e., two or more close records representing the same measurement result. In this paper, we use fuzzy measures to address the problem of detecting duplicates in a database consisting of point measurements. As a test case, we use a database of measurements of anomalies in the Earth's gravity field that we have compiled. We show that a natural duplicate deletion algorithm requires (in the worst case) quadratic time, and we propose a new asymptotically optimal O(n/spl middot/log(n)) algorithm. These algorithms have been successfully applied to gravity databases. We believe that they will prove to be useful when dealing with many other types of point data.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Geospatial databases generally consist of measurements related to points (or pixels in the case of raster data), lines, and polygons. In recent years, the size and complexity of these databases have increased significantly and they often contain duplicate records, i.e., two or more close records representing the same measurement result. In this paper, we use fuzzy measures to address the problem of detecting duplicates in a database consisting of point measurements. As a test case, we use a database of measurements of anomalies in the Earth's gravity field that we have compiled. We show that a natural duplicate deletion algorithm requires (in the worst case) quadratic time, and we propose a new asymptotically optimal O(n/spl middot/log(n)) algorithm. These algorithms have been successfully applied to gravity databases. We believe that they will prove to be useful when dealing with many other types of point data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地理信息系统中模糊测度作为数据融合工具的应用:案例研究
地理空间数据库通常由与点(或光栅数据中的像素)、线和多边形相关的测量值组成。近年来,这些数据库的规模和复杂性显著增加,它们经常包含重复记录,即代表相同测量结果的两个或多个接近记录。在本文中,我们使用模糊度量来解决在由点测量组成的数据库中检测重复的问题。作为一个测试案例,我们使用了一个我们编译的地球重力场异常测量数据数据库。我们证明了自然的重复删除算法需要(在最坏的情况下)二次时间,并且我们提出了一个新的渐近最优O(n/spl middot/log(n))算法。这些算法已成功应用于重力数据库。我们相信,在处理许多其他类型的点数据时,它们将被证明是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy-rough nearest-neighbor classification approach Fault detection and diagnosis in turbine engines using fuzzy logic How the number of measured dimensions affects fuzzy causal measures of vitamin therapy for hyperhomocysteinemia in stroke patients The fuzzy rough approximation decomposability Fuzzy-neuro system for bridge health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1