The contour extraction of neck lymph node ultrasound image based on multi-scale wavelet transform and GVF snake model

Qi Fei, Yujing Lu, Yufeng Zhang
{"title":"The contour extraction of neck lymph node ultrasound image based on multi-scale wavelet transform and GVF snake model","authors":"Qi Fei, Yujing Lu, Yufeng Zhang","doi":"10.1109/ICSPCC.2013.6664063","DOIUrl":null,"url":null,"abstract":"It is of positive significance to extract the contour of ultrasound images for medical diagnosis. The paper proposes a method which combines with multi-scale wavelet transform modulus maxima and GVF snake algorithm to extract the contour of cervical lymph node. Firstly, the proposed method obtains the initial contour of the ultrasound image with using an algorithm of edge detection called wavelet transform modulus maxima, and then using GVF snake model can extract the accurate contour of the image. Experiments show that the method overcomes the disadvantages of the wavelet analysis getting the discontinuous edge; it is better in noise immunity and anti-artifact interference compared with the traditional GVF snake model. In addition, the initial contour is close to the real edge of the given image, thus it reduces the iteration number of gradient vector flow (GVF) field and improves the convergence speed of the contour.","PeriodicalId":124509,"journal":{"name":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC.2013.6664063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is of positive significance to extract the contour of ultrasound images for medical diagnosis. The paper proposes a method which combines with multi-scale wavelet transform modulus maxima and GVF snake algorithm to extract the contour of cervical lymph node. Firstly, the proposed method obtains the initial contour of the ultrasound image with using an algorithm of edge detection called wavelet transform modulus maxima, and then using GVF snake model can extract the accurate contour of the image. Experiments show that the method overcomes the disadvantages of the wavelet analysis getting the discontinuous edge; it is better in noise immunity and anti-artifact interference compared with the traditional GVF snake model. In addition, the initial contour is close to the real edge of the given image, thus it reduces the iteration number of gradient vector flow (GVF) field and improves the convergence speed of the contour.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度小波变换和GVF蛇形模型的颈部淋巴结超声图像轮廓提取
超声图像的轮廓提取对医学诊断具有积极意义。提出了一种结合多尺度小波变换模极大值和GVF蛇形算法提取颈部淋巴结轮廓的方法。该方法首先利用小波变换模极大值边缘检测算法获得超声图像的初始轮廓,然后利用梯度矢量流场蛇形模型提取图像的精确轮廓。实验表明,该方法克服了小波分析得到不连续边缘的缺点;与传统的GVF蛇形模型相比,该模型具有更好的抗噪声能力和抗伪干扰能力。此外,初始轮廓更接近给定图像的真实边缘,从而减少了梯度矢量流场的迭代次数,提高了轮廓的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direction of arrival estimation via sparse representation of fourth order statistics Analysis of accurate signal propagation model for through-wall imaging radar using compressive sensing Research on smart antenna beamforming by generalized regression neural network 3D underwater topography rebuilding based on single beam sonar Noise performance of a new FM-DCSK communication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1