Abnormal Behavior Detection via Sparse Reconstruction Analysis of Trajectory

Ce Li, Zhenjun Han, Qixiang Ye, Jianbin Jiao
{"title":"Abnormal Behavior Detection via Sparse Reconstruction Analysis of Trajectory","authors":"Ce Li, Zhenjun Han, Qixiang Ye, Jianbin Jiao","doi":"10.1109/ICIG.2011.104","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for abnormal behavior detection in surveillance videos via sparse reconstruction analysis. The motion trajectories of objects are firstly defined as fixed-length parametric vectors based on approximating cubic B-spline curves. Then the vectors are classified as behavior patterns and finally distinguished between normal and abnormal behaviors based on sparse reconstruction analysis, in which a classifier is constructed with sparse linear reconstruction coefficients by computing L1-norm minimization and sparse reconstruction residuals learning from labeled training samples. Experimental results on public dataset show the effectiveness of the proposed approach.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

This paper proposes a new method for abnormal behavior detection in surveillance videos via sparse reconstruction analysis. The motion trajectories of objects are firstly defined as fixed-length parametric vectors based on approximating cubic B-spline curves. Then the vectors are classified as behavior patterns and finally distinguished between normal and abnormal behaviors based on sparse reconstruction analysis, in which a classifier is constructed with sparse linear reconstruction coefficients by computing L1-norm minimization and sparse reconstruction residuals learning from labeled training samples. Experimental results on public dataset show the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于轨迹稀疏重建分析的异常行为检测
本文提出了一种基于稀疏重建分析的监控视频异常行为检测新方法。首先在逼近三次b样条曲线的基础上将物体的运动轨迹定义为定长参数向量;然后将向量分类为行为模式,最后基于稀疏重建分析区分正常和异常行为,其中通过计算l1 -范数最小化和从标记的训练样本中学习稀疏重建残差,构建具有稀疏线性重建系数的分类器。在公共数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion LIDAR-based Long Range Road Intersection Detection A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine Target Tracking Based on Wavelet Features in the Dynamic Image Sequence Visual Word Pairs for Similar Image Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1