Structural maximum a posteriori speaker adaptation of speaking rate-dependent hierarchical prosodic model for Mandarin TTS

I-Bin Liao, Chen-Yu Chiang, Sin-Horng Chen
{"title":"Structural maximum a posteriori speaker adaptation of speaking rate-dependent hierarchical prosodic model for Mandarin TTS","authors":"I-Bin Liao, Chen-Yu Chiang, Sin-Horng Chen","doi":"10.1109/ICASSP.2016.7472754","DOIUrl":null,"url":null,"abstract":"In this paper, a structural maximum a posterior speaker adaptation method to adjust the existing speaking rate (SR) dependent hierarchical prosodic model (SR-HPM) to a new speaker's data for realizing a new voice of any given SR is discussed. The adaptive SR-HPM is formulated based on MAP estimation with a reference SR-HPM serving as an informative prior. The prior information provided by the reference SR-HPM is hierarchically organized by decision trees. The results of objective and subjective evaluations showed that the proposed method not only performed slightly better than the maximum likelihood-based model in the observed SR range of the target speaker's data, but also was much better in the unseen SR range.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a structural maximum a posterior speaker adaptation method to adjust the existing speaking rate (SR) dependent hierarchical prosodic model (SR-HPM) to a new speaker's data for realizing a new voice of any given SR is discussed. The adaptive SR-HPM is formulated based on MAP estimation with a reference SR-HPM serving as an informative prior. The prior information provided by the reference SR-HPM is hierarchically organized by decision trees. The results of objective and subjective evaluations showed that the proposed method not only performed slightly better than the maximum likelihood-based model in the observed SR range of the target speaker's data, but also was much better in the unseen SR range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语速的汉语TTS分层韵律模型的结构最大后验自适应
本文讨论了一种结构最大后置说话人自适应方法,将现有的依赖于说话率(SR)的分层韵律模型(SR- hpm)调整为新说话人的数据,以实现任意给定SR的新语音。在MAP估计的基础上,以参考SR-HPM作为信息先验,建立了自适应SR-HPM。参考SR-HPM提供的先验信息通过决策树分层组织。客观和主观评价结果表明,该方法不仅在目标说话人数据的可见SR范围内略优于基于最大似然的模型,而且在未见SR范围内也明显优于基于最大似然的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1