{"title":"Structural maximum a posteriori speaker adaptation of speaking rate-dependent hierarchical prosodic model for Mandarin TTS","authors":"I-Bin Liao, Chen-Yu Chiang, Sin-Horng Chen","doi":"10.1109/ICASSP.2016.7472754","DOIUrl":null,"url":null,"abstract":"In this paper, a structural maximum a posterior speaker adaptation method to adjust the existing speaking rate (SR) dependent hierarchical prosodic model (SR-HPM) to a new speaker's data for realizing a new voice of any given SR is discussed. The adaptive SR-HPM is formulated based on MAP estimation with a reference SR-HPM serving as an informative prior. The prior information provided by the reference SR-HPM is hierarchically organized by decision trees. The results of objective and subjective evaluations showed that the proposed method not only performed slightly better than the maximum likelihood-based model in the observed SR range of the target speaker's data, but also was much better in the unseen SR range.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, a structural maximum a posterior speaker adaptation method to adjust the existing speaking rate (SR) dependent hierarchical prosodic model (SR-HPM) to a new speaker's data for realizing a new voice of any given SR is discussed. The adaptive SR-HPM is formulated based on MAP estimation with a reference SR-HPM serving as an informative prior. The prior information provided by the reference SR-HPM is hierarchically organized by decision trees. The results of objective and subjective evaluations showed that the proposed method not only performed slightly better than the maximum likelihood-based model in the observed SR range of the target speaker's data, but also was much better in the unseen SR range.