Fast Compressed Domain JPEG Image Retrieval

G. Schaefer
{"title":"Fast Compressed Domain JPEG Image Retrieval","authors":"G. Schaefer","doi":"10.1109/ICVISP.2017.29","DOIUrl":null,"url":null,"abstract":"While much progress has been achieved in the field of content-based image retrieval (CBIR), almost all CBIR techniques operate on pixel data although virtually all images are stored in compressed form. In this invited paper, we present efficient and effective CBIR techniques that operate directly in the compressed domain and thus do not require full decompression for feature extraction. In particular, we explore compressed domain techniques for JPEG images and show how CBIR features can be extracted from DCT coefficients, from differentially coded DC data, and from optimised Huffman and quantisation tables that are stored in the JPEG headers.","PeriodicalId":404467,"journal":{"name":"2017 International Conference on Vision, Image and Signal Processing (ICVISP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Vision, Image and Signal Processing (ICVISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVISP.2017.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

While much progress has been achieved in the field of content-based image retrieval (CBIR), almost all CBIR techniques operate on pixel data although virtually all images are stored in compressed form. In this invited paper, we present efficient and effective CBIR techniques that operate directly in the compressed domain and thus do not require full decompression for feature extraction. In particular, we explore compressed domain techniques for JPEG images and show how CBIR features can be extracted from DCT coefficients, from differentially coded DC data, and from optimised Huffman and quantisation tables that are stored in the JPEG headers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速压缩域JPEG图像检索
虽然基于内容的图像检索(CBIR)领域已经取得了很大进展,但几乎所有的CBIR技术都是在像素数据上操作的,尽管几乎所有的图像都是以压缩形式存储的。在这篇特邀论文中,我们提出了高效和有效的CBIR技术,该技术直接在压缩域中操作,因此不需要完全解压即可进行特征提取。特别是,我们探索了JPEG图像的压缩域技术,并展示了如何从DCT系数中提取CBIR特征,从差分编码的DC数据中提取CBIR特征,以及从存储在JPEG标头中的优化霍夫曼和量化表中提取CBIR特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Resolution Image Inpainting through Multiple Deep Networks New LMS Adaptive Filtering Algorithm with Variable Step Size Aerial Base Stations for Enabling Cellular Communications during Emergency Situation Panorama Stitching, Moving Object Detection and Tracking in UAV Videos Initial Study to Evaluate Fuzzy Logic on Diagnosis of Generic Atherosclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1