An introduction to a novel crossover operator for real-value encoded genetic algorithm: Gaussian crossover operator

Michał Kubicki, Daniel Figurowski
{"title":"An introduction to a novel crossover operator for real-value encoded genetic algorithm: Gaussian crossover operator","authors":"Michał Kubicki, Daniel Figurowski","doi":"10.1109/IIPHDW.2018.8388331","DOIUrl":null,"url":null,"abstract":"The following article describes a novel implementation of a crossover operator for real-value encoded Genetic Algorithms (GA). The method, Gaussian Crossover Operator (GCO), utilizes the properties of Gaussian functions and Gaussian distribution for offspring generation. Each parent's fitness is evaluated in the context of general population by a heuristic function, i.e. the devised operator is performance based — the parents' individual fitness values act as a basis for a non-deterministic weighing mechanism. The child's gene value is a Gaussian Variable drawn upon the normal distribution determined by the overall state of the algorithm and the antecedent's evaluation. The performance of the algorithm is discussed and compared with the underlaying classical Genetic Algorithm and other GA implementations found in the literature; several test cases are considered. The results show that the proposed Gaussian Crossover Operator is feasible for solving optimization problems.","PeriodicalId":405270,"journal":{"name":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","volume":"40 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Interdisciplinary PhD Workshop (IIPhDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIPHDW.2018.8388331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The following article describes a novel implementation of a crossover operator for real-value encoded Genetic Algorithms (GA). The method, Gaussian Crossover Operator (GCO), utilizes the properties of Gaussian functions and Gaussian distribution for offspring generation. Each parent's fitness is evaluated in the context of general population by a heuristic function, i.e. the devised operator is performance based — the parents' individual fitness values act as a basis for a non-deterministic weighing mechanism. The child's gene value is a Gaussian Variable drawn upon the normal distribution determined by the overall state of the algorithm and the antecedent's evaluation. The performance of the algorithm is discussed and compared with the underlaying classical Genetic Algorithm and other GA implementations found in the literature; several test cases are considered. The results show that the proposed Gaussian Crossover Operator is feasible for solving optimization problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
介绍了一种用于实值编码遗传算法的交叉算子:高斯交叉算子
下面的文章描述了一种用于实值编码遗传算法(GA)的交叉算子的新实现。高斯交叉算子(GCO)利用高斯函数和高斯分布的特性进行子代生成。每个亲本的适应度通过启发式函数在一般群体的背景下进行评估,即设计的算子是基于性能的-亲本的个体适应度值作为非确定性加权机制的基础。孩子的基因值是一个基于正态分布的高斯变量,该正态分布由算法的总体状态和前例的评估决定。讨论了该算法的性能,并与基础经典遗传算法和文献中发现的其他遗传算法实现进行了比较;这里考虑了几个测试用例。结果表明,所提出的高斯交叉算子对于求解优化问题是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequency response modeling of power transformer windings considering the attributes of ferromagnetic core Analysis of the impact of temperature load on the state of stress in a bolted flange connection Energy efficiency analysis of railway turnout heating with a simplified snow model using classical and contactless heating method Air-gap data transmission using screen brightness modulation Universal windows application for the parameters calculation of shields against ionizing radiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1