Cancer Transcriptome Analysis with RNA-Seq Using Quantum K-means Clustering Algorithm

Abrar-Ul-Haq, Talal Bonny
{"title":"Cancer Transcriptome Analysis with RNA-Seq Using Quantum K-means Clustering Algorithm","authors":"Abrar-Ul-Haq, Talal Bonny","doi":"10.1109/ASET48392.2020.9118341","DOIUrl":null,"url":null,"abstract":"A quantified RNA transcriptome is of particular interest in biomedical research as it can be for cancer diagnosis. Quantum algorithms can give exponential performance gains over their classical counterparts. In this paper, we implement a quantum clustering technique to classify the cells into different cancer types. To verify our implementation, we test it using the standard ‘gene expression cancer RNA-Seq’ dataset. The experimental results show that our algorithm achieves high accuracy of 94.8% (on average) in classifying the different types of cancer.","PeriodicalId":237887,"journal":{"name":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Advances in Science and Engineering Technology International Conferences (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASET48392.2020.9118341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A quantified RNA transcriptome is of particular interest in biomedical research as it can be for cancer diagnosis. Quantum algorithms can give exponential performance gains over their classical counterparts. In this paper, we implement a quantum clustering technique to classify the cells into different cancer types. To verify our implementation, we test it using the standard ‘gene expression cancer RNA-Seq’ dataset. The experimental results show that our algorithm achieves high accuracy of 94.8% (on average) in classifying the different types of cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量子k均值聚类算法的RNA-Seq癌症转录组分析
定量的RNA转录组在生物医学研究中特别有趣,因为它可以用于癌症诊断。量子算法可以提供指数级的性能增益。在本文中,我们实现了一种量子聚类技术,将细胞分类为不同的癌症类型。为了验证我们的实现,我们使用标准的“基因表达癌症RNA-Seq”数据集进行测试。实验结果表明,我们的算法在对不同类型的癌症进行分类时,准确率达到了94.8%(平均)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication of acoustic microfluidic platforms for particle manipulation Transient Analysis of DC Shunt Motor Supplied by Stand-alone PV System Employing FOCV for MPPT Verifying the Underutilizationof Geographic Information Systems (GIS) in the Realm of Landscape Architecture and Planning Investigation of Fall Hazards from Ablution Floors of Mosques in the UAE: Assessments of Traction and Texture Features and Their Effects on Slipperiness Emergence and Growth of Mobile Money in Modern India: A Study on the Effect of Mobile Money
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1