Scalable Spatial GroupBy Aggregations Over Complex Polygons

Laila Abdelhafeez, A. Magdy, V. Tsotras
{"title":"Scalable Spatial GroupBy Aggregations Over Complex Polygons","authors":"Laila Abdelhafeez, A. Magdy, V. Tsotras","doi":"10.1145/3397536.3422222","DOIUrl":null,"url":null,"abstract":"This paper studies a spatial group-by query over complex polygons. Groups are selected from a set of non-overlapping complex polygons, typically in the order of thousands, while the input is a large-scale dataset that contains hundreds of millions or even billions of spatial points. Given a set of spatial points and a set of polygons, the spatial group-by query returns the number of points that lie within boundaries of each polygon. This problem is challenging because real polygons (like counties, cities, postal codes, voting regions, etc.) are described by very complex boundaries. We propose a highly-parallelized query processing framework to efficiently compute the spatial group-by query. Our experimental evaluation with real data and queries has shown significant superiority over all existing techniques.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"57 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper studies a spatial group-by query over complex polygons. Groups are selected from a set of non-overlapping complex polygons, typically in the order of thousands, while the input is a large-scale dataset that contains hundreds of millions or even billions of spatial points. Given a set of spatial points and a set of polygons, the spatial group-by query returns the number of points that lie within boundaries of each polygon. This problem is challenging because real polygons (like counties, cities, postal codes, voting regions, etc.) are described by very complex boundaries. We propose a highly-parallelized query processing framework to efficiently compute the spatial group-by query. Our experimental evaluation with real data and queries has shown significant superiority over all existing techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂多边形上的可伸缩空间分组聚合
研究了复杂多边形上的空间群查询。组是从一组不重叠的复杂多边形中选择的,通常以数千为数量级,而输入是包含数亿甚至数十亿空间点的大规模数据集。给定一组空间点和一组多边形,空间分组查询返回位于每个多边形边界内的点的数量。这个问题具有挑战性,因为真实的多边形(如县、市、邮政编码、投票区域等)是由非常复杂的边界描述的。提出了一种高度并行化的查询处理框架,以有效地计算空间分组查询。我们对真实数据和查询的实验评估显示出比所有现有技术显著的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1