Case Study: Analysis and Mitigation of a Novel Sandbox-Evasion Technique

Ziya Alper Genç, G. Lenzini, D. Sgandurra
{"title":"Case Study: Analysis and Mitigation of a Novel Sandbox-Evasion Technique","authors":"Ziya Alper Genç, G. Lenzini, D. Sgandurra","doi":"10.1145/3360664.3360673","DOIUrl":null,"url":null,"abstract":"Malware is one of the most popular cyber-attack methods in the digital world. According to the independent test company AV-TEST, 350,000 new malware samples are created every day. To analyze all samples by hand to discover whether they are malware does not scale, so antivirus companies automate the process e.g., using sandboxes where samples can be run, observed, and classified. Malware authors are aware of this fact, and try to evade detection. In this paper we describe one of such evasion technique: unprecedented, we discovered it while analyzing a ransomware sample. Analyzed in a Cuckoo Sandbox, the sample was able to avoid triggering malware indicators, thus scoring significantly below the minimum severity level. Here, we discuss what strategy the sample follows to evade the analysis, proposing practical defense methods to nullify, in our turn, the sample's furtive strategy.","PeriodicalId":409365,"journal":{"name":"Proceedings of the Third Central European Cybersecurity Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Central European Cybersecurity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3360664.3360673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malware is one of the most popular cyber-attack methods in the digital world. According to the independent test company AV-TEST, 350,000 new malware samples are created every day. To analyze all samples by hand to discover whether they are malware does not scale, so antivirus companies automate the process e.g., using sandboxes where samples can be run, observed, and classified. Malware authors are aware of this fact, and try to evade detection. In this paper we describe one of such evasion technique: unprecedented, we discovered it while analyzing a ransomware sample. Analyzed in a Cuckoo Sandbox, the sample was able to avoid triggering malware indicators, thus scoring significantly below the minimum severity level. Here, we discuss what strategy the sample follows to evade the analysis, proposing practical defense methods to nullify, in our turn, the sample's furtive strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
案例研究:一种新型沙盒规避技术的分析与缓解
恶意软件是数字世界中最流行的网络攻击方法之一。根据独立测试公司AV-TEST的数据,每天都会产生35万个新的恶意软件样本。手工分析所有样本以发现它们是否为恶意软件无法扩展,因此反病毒公司将过程自动化,例如,使用沙箱来运行,观察和分类样本。恶意软件的作者意识到这一事实,并试图逃避检测。在本文中,我们描述了这种逃避技术之一:前所未有的,我们在分析勒索软件样本时发现了它。在布谷鸟沙盒中分析,样本能够避免触发恶意软件指标,因此得分明显低于最低严重级别。在这里,我们讨论样本遵循什么策略来逃避分析,提出实用的防御方法来消除,反过来,样本的偷偷摸摸的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IPv6 Covert Channels in the Wild A Secure String Class Compliant with PCI DSS Towards a delegation-type secure software development method From Fake News to Virtual Reality: Fake News and Digital Manipulations at the Age of Modern Technology Determining Minimum Hash Width for Hash Chains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1