Reinforcement Learning of Material Flow Control Logic Using Hardware-in-the-Loop Simulation

Florian Jaensch, A. Csiszar, Annika Kienzlen, A. Verl
{"title":"Reinforcement Learning of Material Flow Control Logic Using Hardware-in-the-Loop Simulation","authors":"Florian Jaensch, A. Csiszar, Annika Kienzlen, A. Verl","doi":"10.1109/AI4I.2018.8665712","DOIUrl":null,"url":null,"abstract":"In this paper the concept of reinforcement learning agent is presented, which can deduce the correct control policy of a plant by acting in its digital twin (the HiL simulation). This way the agent substitutes a real control system. By using reinforcement learning methods, a proof of concept application is presented for a simplistic material flow system, with the same type of access to the digital twin which a PLC controller-hardware would have. With the presented approach the agent is able to find the correct control policy.","PeriodicalId":133657,"journal":{"name":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Artificial Intelligence for Industries (AI4I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AI4I.2018.8665712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper the concept of reinforcement learning agent is presented, which can deduce the correct control policy of a plant by acting in its digital twin (the HiL simulation). This way the agent substitutes a real control system. By using reinforcement learning methods, a proof of concept application is presented for a simplistic material flow system, with the same type of access to the digital twin which a PLC controller-hardware would have. With the presented approach the agent is able to find the correct control policy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于硬件在环仿真的物料流控制逻辑强化学习
本文提出了强化学习智能体的概念,该智能体可以通过作用于对象的数字孪生体(HiL仿真)来推断出对象的正确控制策略。这样,代理就代替了一个真正的控制系统。通过使用强化学习方法,提出了一个简单的物料流系统的概念验证应用程序,具有与PLC控制器硬件相同的数字孪生访问类型。利用所提出的方法,智能体能够找到正确的控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assisting Seismic Image Interpretations with Hyperknowledge Applying Machine Learning to Service Assurance in Network Function Virtualization Environment Combinatorial Algorithms in Machine Learning AI Application to Data Analysis, Automatic File Processing Multi-Layer Nested Scatter Plot a Data Wrangling Method for Correlated Multi-Channel Time Series Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1