Spatial variance of color and boundary statistics for salient object detection

Sudeshna Roy, Sukhendu Das
{"title":"Spatial variance of color and boundary statistics for salient object detection","authors":"Sudeshna Roy, Sukhendu Das","doi":"10.1109/NCVPRIPG.2013.6776270","DOIUrl":null,"url":null,"abstract":"Bottom-up saliency detection algorithms identify distinct regions in an image, with rare occurrence of local feature distributions. Notable among those works published recently, use local and global contrast, spectral analysis of the entire image or graph based feature mapping. Whereas, we propose a novel unsupervised method using color compactness and statistical modeling of the background cues, to segment the salient foreground region and thus the salient object. At the first stage of processing, the image is segmented into clusters using color feature. First component proposed for our saliency measure combines disparity in color and spatial distance between patches. In addition to rarity of feature, we propose another component for saliency computation that estimates the divergence of the color of a patch from those in the set of patches at the boundary of the image, representing the background. Combination of these two complementary components provides a much improved saliency map for salient object detection.We verify the performance of our proposed method of saliency detection on two popular benchmark datasets, with one or more salient regions and diverse saliency characteristics. Experimental results show that our method out-performs many existing state-of-the-art methods.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Bottom-up saliency detection algorithms identify distinct regions in an image, with rare occurrence of local feature distributions. Notable among those works published recently, use local and global contrast, spectral analysis of the entire image or graph based feature mapping. Whereas, we propose a novel unsupervised method using color compactness and statistical modeling of the background cues, to segment the salient foreground region and thus the salient object. At the first stage of processing, the image is segmented into clusters using color feature. First component proposed for our saliency measure combines disparity in color and spatial distance between patches. In addition to rarity of feature, we propose another component for saliency computation that estimates the divergence of the color of a patch from those in the set of patches at the boundary of the image, representing the background. Combination of these two complementary components provides a much improved saliency map for salient object detection.We verify the performance of our proposed method of saliency detection on two popular benchmark datasets, with one or more salient regions and diverse saliency characteristics. Experimental results show that our method out-performs many existing state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
显著目标检测的颜色空间方差和边界统计
自底向上显著性检测算法识别图像中的不同区域,很少出现局部特征分布。在最近发表的作品中,值得注意的是,使用局部和全局对比,整个图像的光谱分析或基于图形的特征映射。然而,我们提出了一种新的无监督方法,利用颜色紧凑性和背景线索的统计建模来分割突出的前景区域,从而分割突出的目标。在处理的第一阶段,使用颜色特征将图像分割成簇。我们提出的第一个显著性度量组件结合了色差和斑块之间的空间距离。除了特征的稀有性之外,我们还提出了另一个显著性计算组件,该组件用于估计斑块的颜色与图像边界(代表背景)的斑块集中的颜色的散度。这两个互补组件的组合为显著目标检测提供了大大改进的显著性图。我们在两个流行的基准数据集上验证了我们提出的显著性检测方法的性能,这些数据集具有一个或多个显著区域和不同的显著性特征。实验结果表明,该方法优于许多现有的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1