{"title":"A Novel Interactive Recurrent Attention Network for Emotion-Cause Pair Extraction","authors":"Xiangyu Jia, Xinhai Chen, Qian Wan, Jie Liu","doi":"10.1145/3446132.3446195","DOIUrl":null,"url":null,"abstract":"Unlike Emotion Cause Extraction (ECE) task which consists of pre-annotate emotions and passage, emotion-cause pair extraction (ECPE) aims at extracting potential emotions and corresponding causes in the document without the need for pre-annotations. Traditional ECPE solutions divide the extracting emotions and causes operation into two separate parts. However, separating the bidirectional dependence between emotion and cause may lose a lot of potentially useful information. In this paper, we propose a novel interactive recurrent attention network (IRAN). Our approach focuses on the bidirectional impact between emotions and causes, and extracts emotions and causes simultaneously. The information in the document can be fully exploited through multiple modeling and information extraction. Our emotion-specific transformation and distance fusion correlation can adaptively focus on the emotions and the distance, gracefully incorporate them into a distinguishable neural network attention framework. The experimental results show that our proposed model achieves better performance than other widely-used models on the ECPE corpus.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Unlike Emotion Cause Extraction (ECE) task which consists of pre-annotate emotions and passage, emotion-cause pair extraction (ECPE) aims at extracting potential emotions and corresponding causes in the document without the need for pre-annotations. Traditional ECPE solutions divide the extracting emotions and causes operation into two separate parts. However, separating the bidirectional dependence between emotion and cause may lose a lot of potentially useful information. In this paper, we propose a novel interactive recurrent attention network (IRAN). Our approach focuses on the bidirectional impact between emotions and causes, and extracts emotions and causes simultaneously. The information in the document can be fully exploited through multiple modeling and information extraction. Our emotion-specific transformation and distance fusion correlation can adaptively focus on the emotions and the distance, gracefully incorporate them into a distinguishable neural network attention framework. The experimental results show that our proposed model achieves better performance than other widely-used models on the ECPE corpus.