StML: Bridging the gap between FPGA design and HDL circuit description

Dustin Peterson, O. Bringmann, Thomas Schweizer, W. Rosenstiel
{"title":"StML: Bridging the gap between FPGA design and HDL circuit description","authors":"Dustin Peterson, O. Bringmann, Thomas Schweizer, W. Rosenstiel","doi":"10.1109/FPT.2013.6718366","DOIUrl":null,"url":null,"abstract":"FPGA circuit implementation is a unidirectional and time-consuming process. Existing approaches like the incremental synthesis try to shorten it, but still need to execute the whole flow for a changed circuit partition. Other approaches circumvent process stages by providing bidirectional mappings between their results. In this paper we propose an approach to provide a bidirectional link between an FPGA design and its HDL code. This link enables the circumvention of the most time-consuming stages (synthesis, mapping, placing, routing) of the FPGA circuit implementation. We implemented our approach in a Java-based EDA tool library, called Static Mapping Library (StML). We demonstrate its applicability by means of hardware debugging and an RTL-based injection of permanent faults, built on top of the StML. Experimental results illustrate that a mapping coverage between 98.5%-100.0% can be obtained, which substantiates the feasibility of this approach. Further experiments illustrate a controllable tradeoff between area overhead, circuit granularity and mapping granularity. With the finest mapping granularity, the area overhead has been between 1.8% and 60.2% for RTL-based circuits. The speedup of the proposed fault injection method has been estimated to be up to 6x for the tested circuits.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

FPGA circuit implementation is a unidirectional and time-consuming process. Existing approaches like the incremental synthesis try to shorten it, but still need to execute the whole flow for a changed circuit partition. Other approaches circumvent process stages by providing bidirectional mappings between their results. In this paper we propose an approach to provide a bidirectional link between an FPGA design and its HDL code. This link enables the circumvention of the most time-consuming stages (synthesis, mapping, placing, routing) of the FPGA circuit implementation. We implemented our approach in a Java-based EDA tool library, called Static Mapping Library (StML). We demonstrate its applicability by means of hardware debugging and an RTL-based injection of permanent faults, built on top of the StML. Experimental results illustrate that a mapping coverage between 98.5%-100.0% can be obtained, which substantiates the feasibility of this approach. Further experiments illustrate a controllable tradeoff between area overhead, circuit granularity and mapping granularity. With the finest mapping granularity, the area overhead has been between 1.8% and 60.2% for RTL-based circuits. The speedup of the proposed fault injection method has been estimated to be up to 6x for the tested circuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弥合FPGA设计和HDL电路描述之间的差距
FPGA电路的实现是一个单向且耗时的过程。现有的方法,如增量合成,试图缩短它,但仍然需要执行整个流程的改变电路分区。其他方法通过提供结果之间的双向映射来绕过过程阶段。在本文中,我们提出了一种在FPGA设计和其HDL代码之间提供双向链接的方法。这个链接可以绕过FPGA电路实现中最耗时的阶段(合成、映射、放置、路由)。我们在一个称为静态映射库(StML)的基于java的EDA工具库中实现了我们的方法。我们通过硬件调试和基于rtl的永久故障注入(构建在StML之上)来证明其适用性。实验结果表明,该方法的映射覆盖率在98.5% ~ 100.0%之间,验证了该方法的可行性。进一步的实验证明了面积开销、电路粒度和映射粒度之间的可控权衡。使用最精细的映射粒度,基于rtl的电路的面积开销在1.8%到60.2%之间。所提出的故障注入方法对测试电路的加速可达6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and optimization of heterogeneous tree-based FPGA using 3D technology Mobile GPU shader processor based on non-blocking Coarse Grained Reconfigurable Arrays architecture An FPGA-cluster-accelerated match engine for content-based image retrieval A non-intrusive portable fault injection framework to assess reliability of FPGA-based designs Quantum FPGA architecture design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1