A comparative study of convolutional neural networks for classification of pigmented skin lesions

Natalia Camillo do Carmo, J. F. Mari
{"title":"A comparative study of convolutional neural networks for classification of pigmented skin lesions","authors":"Natalia Camillo do Carmo, J. F. Mari","doi":"10.5753/wvc.2021.18909","DOIUrl":null,"url":null,"abstract":"Skin cancer is one of the most common types of cancer in Brazil and its incidence rate has increased in recent years. Melanoma cases are more aggressive compared to nonmelanoma skin cancer. Machine learning-based classification algorithms can help dermatologists to diagnose whether skin lesion is melanoma or non-melanoma cancer. We compared four convolutional neural networks architectures (ResNet-50, VGG16, Inception-v3, and DenseNet-121) using different training strategies and validation methods to classify seven classes of skin lesions. The experiments were executed using the HAM10000 dataset which contains 10,015 images of pigmented skin lesions. We considered the test accuracy to determine the best model for each strategy. DenseNet-121 was the best model when trained with fine-tuning and data augmentation, 90% (k-fold crossvalidation). Our results can help to improve the use of machine learning algorithms for classifying pigmented skin lesions.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Skin cancer is one of the most common types of cancer in Brazil and its incidence rate has increased in recent years. Melanoma cases are more aggressive compared to nonmelanoma skin cancer. Machine learning-based classification algorithms can help dermatologists to diagnose whether skin lesion is melanoma or non-melanoma cancer. We compared four convolutional neural networks architectures (ResNet-50, VGG16, Inception-v3, and DenseNet-121) using different training strategies and validation methods to classify seven classes of skin lesions. The experiments were executed using the HAM10000 dataset which contains 10,015 images of pigmented skin lesions. We considered the test accuracy to determine the best model for each strategy. DenseNet-121 was the best model when trained with fine-tuning and data augmentation, 90% (k-fold crossvalidation). Our results can help to improve the use of machine learning algorithms for classifying pigmented skin lesions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络用于色素性皮肤病变分类的比较研究
皮肤癌是巴西最常见的癌症之一,近年来其发病率有所上升。黑色素瘤病例比非黑色素瘤皮肤癌更具侵袭性。基于机器学习的分类算法可以帮助皮肤科医生诊断皮肤病变是黑色素瘤还是非黑色素瘤癌。我们比较了四种卷积神经网络架构(ResNet-50、VGG16、Inception-v3和DenseNet-121)使用不同的训练策略和验证方法对七种皮肤病变进行分类。实验使用HAM10000数据集执行,该数据集包含10015张色素皮肤病变图像。我们考虑了测试准确性来确定每种策略的最佳模型。当经过微调和数据增强训练时,DenseNet-121是最好的模型,90% (k-fold交叉验证)。我们的研究结果可以帮助改进机器学习算法对色素皮肤病变进行分类的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coffee plant image segmentation and disease detection using JSEG algorithm Grocery Product Recognition to Aid Visually Impaired People Pavement Crack Segmentation using a U-Net based Neural Network Periocular authentication in smartphones applying uLBP descriptor on CNN Feature Maps Automatic Segmentation and ROI detection in cardiac MRI of Cardiomyopathy using q-Sigmoid as preprocessing step
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1