Bio-inspired Computation Approach for Tumor Growth with Spatial Randomness Analysis of Kidney Cancer Xenograft Pathology Slides

Aydin Saribudak, Yiyu Dong, J. Hsieh, M. U. Uyar
{"title":"Bio-inspired Computation Approach for Tumor Growth with Spatial Randomness Analysis of Kidney Cancer Xenograft Pathology Slides","authors":"Aydin Saribudak, Yiyu Dong, J. Hsieh, M. U. Uyar","doi":"10.4108/EAI.3-12-2015.2262350","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze digitized images of Hematoxylin-Eosin \n \n(H&E) slides equipped with tumorous tissues from patient derived xenograft models to build our bio-inspired computation method, namely Personalized Relevance Parameterization of Spatial Randomness (PReP-SR). Applying spatial pattern analysis techniques of quadrat counts, kernel estimation and nearest neighbor functions to the images of the H&E samples, slide-specific features are extracted to examine the hypothesis that existence of dependency of nuclei positions possesses information of individual tumor characteristics. \n \nThese features are then used as inputs to PReP-SR to compute tumor growth parameters for exponential-linear model. Differential evolution \n \nalgorithms are developed for tumor growth parameter computations, where a candidate vector in a population consists of size selection indices for spatial evaluation and weight coefficients for spatial features and their correlations. Using leave-one-out-cross-validation method, we showed that, for a set of H&E slides from kidney cancer patient derived xenograft models, PReP-SR generates \n \npersonalized model parameters with an average error rate of \n \n13.58%. The promising results indicate that bio-inspired computation techniques may be useful to construct mathematical models with patient specific growth parameters in clinical systems.","PeriodicalId":415083,"journal":{"name":"International Conference on Bio-inspired Information and Communications Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Bio-inspired Information and Communications Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.3-12-2015.2262350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we analyze digitized images of Hematoxylin-Eosin (H&E) slides equipped with tumorous tissues from patient derived xenograft models to build our bio-inspired computation method, namely Personalized Relevance Parameterization of Spatial Randomness (PReP-SR). Applying spatial pattern analysis techniques of quadrat counts, kernel estimation and nearest neighbor functions to the images of the H&E samples, slide-specific features are extracted to examine the hypothesis that existence of dependency of nuclei positions possesses information of individual tumor characteristics. These features are then used as inputs to PReP-SR to compute tumor growth parameters for exponential-linear model. Differential evolution algorithms are developed for tumor growth parameter computations, where a candidate vector in a population consists of size selection indices for spatial evaluation and weight coefficients for spatial features and their correlations. Using leave-one-out-cross-validation method, we showed that, for a set of H&E slides from kidney cancer patient derived xenograft models, PReP-SR generates personalized model parameters with an average error rate of 13.58%. The promising results indicate that bio-inspired computation techniques may be useful to construct mathematical models with patient specific growth parameters in clinical systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间随机性分析的异种肾癌病理切片肿瘤生长的仿生计算方法
在本文中,我们分析了来自患者来源的异种移植模型的肿瘤组织的苏木精-伊红(H&E)载玻片的数字化图像,以建立我们的仿生计算方法,即空间随机性的个性化相关参数化(PReP-SR)。利用样方计数、核估计和最近邻函数等空间模式分析技术,对H&E样本图像提取幻灯片特异性特征,检验核位置依赖的存在具有个体肿瘤特征信息的假设。然后将这些特征用作PReP-SR的输入,以计算指数线性模型的肿瘤生长参数。差分进化算法用于肿瘤生长参数的计算,其中候选向量由用于空间评价的大小选择指数和用于空间特征及其相关性的权重系数组成。使用留一交叉验证方法,我们发现,对于一组来自肾癌患者衍生异种移植模型的H&E玻片,PReP-SR生成个性化模型参数的平均错误率为13.58%。这一令人鼓舞的结果表明,生物启发计算技术可能有助于在临床系统中构建具有患者特异性生长参数的数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Taking Cognition Seriously: A generalised physics of cognition Digestive System Dynamics in Molecular Communication Perspectives Sensor Scheme for Target Tracking in Mobile Sensor Networks Leak-Resistant Design of DNA Strand Displacement Systems Design for Detecting Red Blood Cell Deformation at Different Flow Velocities in Blood Vessel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1