Generalized Fast Iteratively Reweighted Soft-Thresholding Algorithm for Sparse Coding Under Tight Frames in the Complex-Domain

P. Pokala, Satvik Chemudupati, C. Seelamantula
{"title":"Generalized Fast Iteratively Reweighted Soft-Thresholding Algorithm for Sparse Coding Under Tight Frames in the Complex-Domain","authors":"P. Pokala, Satvik Chemudupati, C. Seelamantula","doi":"10.1109/ICIP40778.2020.9190686","DOIUrl":null,"url":null,"abstract":"We present a new method for fast magnetic resonance image (MRI) reconstruction in the complex-domain under tight frames. We propose a generalized problem formulation that allows for different weight-update strategies for iteratively reweighted ℓ1-minimization under tight frames. Further, we impose sufficient conditions on the function of the weights that leads to the reweighting strategy, which follows the interpretation originally given by Candès et al, but is more efficient than theirs. Since the objective function in complex-domain compressive sensing MRI (CS-MRI) reconstruction problem is nonholomorphic, we resort to Wirtinger calculus for deriving the update strategies. We develop an algorithm called generalized iteratively reweighted soft-thresholding algorithm (GIRSTA) and its fast variant, namely, generalized fast iteratively reweighted soft-thresholding algorithm (GFIRSTA). We provide convergence guarantees for GIRSTA and empirical convergence results for GFIRSTA. Our experiments show a remarkable performance of the proposed algorithms for complex-domain CS-MRI reconstruction considering both random sampling and radial sampling strategies. GFIRSTA outperforms state-of-the-art techniques in terms of peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM).","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new method for fast magnetic resonance image (MRI) reconstruction in the complex-domain under tight frames. We propose a generalized problem formulation that allows for different weight-update strategies for iteratively reweighted ℓ1-minimization under tight frames. Further, we impose sufficient conditions on the function of the weights that leads to the reweighting strategy, which follows the interpretation originally given by Candès et al, but is more efficient than theirs. Since the objective function in complex-domain compressive sensing MRI (CS-MRI) reconstruction problem is nonholomorphic, we resort to Wirtinger calculus for deriving the update strategies. We develop an algorithm called generalized iteratively reweighted soft-thresholding algorithm (GIRSTA) and its fast variant, namely, generalized fast iteratively reweighted soft-thresholding algorithm (GFIRSTA). We provide convergence guarantees for GIRSTA and empirical convergence results for GFIRSTA. Our experiments show a remarkable performance of the proposed algorithms for complex-domain CS-MRI reconstruction considering both random sampling and radial sampling strategies. GFIRSTA outperforms state-of-the-art techniques in terms of peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复域紧帧稀疏编码的广义快速迭代重加权软阈值算法
提出了一种紧凑框架下复杂域快速磁共振图像重建的新方法。我们提出了一个广义的问题公式,它允许在紧框架下迭代重加权最小化的不同权重更新策略。此外,我们对权重函数施加了充分条件,从而导致重权重策略,该策略遵循cand等人最初给出的解释,但比他们的解释更有效。由于复杂域压缩感知MRI (CS-MRI)重构问题的目标函数是非全纯的,我们采用Wirtinger演算来推导更新策略。本文提出了一种广义迭代重加权软阈值算法(GIRSTA)及其快速变体——广义快速迭代重加权软阈值算法(GFIRSTA)。给出了GIRSTA的收敛性保证和GFIRSTA的经验收敛性结果。我们的实验表明,在考虑随机采样和径向采样策略的复杂域CS-MRI重建中,所提出的算法具有显着的性能。GFIRSTA在峰值信噪比(PSNR)和结构相似性指数(SSIM)方面优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1