Shape invariant recognition of segmented human face images using eigenfaces

Z. Riaz, M. Beetz, B. Radig
{"title":"Shape invariant recognition of segmented human face images using eigenfaces","authors":"Z. Riaz, M. Beetz, B. Radig","doi":"10.1109/INMIC.2008.4777807","DOIUrl":null,"url":null,"abstract":"This paper describes an efficient approach for face recognition as a two step process: (1) segmenting the face region from an image by using an appearance based model, (2) using eigenfaces for person identification for segmented face region. The efficiency lies not only in generation of appearance models which uses the explicit approach for shape and texture but also the combined use of the aforementioned techniques. The result is an algorithm that is robust against facial expressions variances. Moreover it reduces the amount of texture up to 12% of the image texture instead of considering whole face image. Experiments have been performed on Cohn Kanade facial database using ten subjects for training and seven for testing purposes. This achieved a successful face recognition rate up to 92.85% with and without facial expressions. Face recognition using principal component analysis (PCA) is fast and efficient to use, while the extracted appearance model can be further used for facial recognition and tracking under lighting and pose variations. This combination is simple to model and apply in real time.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes an efficient approach for face recognition as a two step process: (1) segmenting the face region from an image by using an appearance based model, (2) using eigenfaces for person identification for segmented face region. The efficiency lies not only in generation of appearance models which uses the explicit approach for shape and texture but also the combined use of the aforementioned techniques. The result is an algorithm that is robust against facial expressions variances. Moreover it reduces the amount of texture up to 12% of the image texture instead of considering whole face image. Experiments have been performed on Cohn Kanade facial database using ten subjects for training and seven for testing purposes. This achieved a successful face recognition rate up to 92.85% with and without facial expressions. Face recognition using principal component analysis (PCA) is fast and efficient to use, while the extracted appearance model can be further used for facial recognition and tracking under lighting and pose variations. This combination is simple to model and apply in real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征脸的分割人脸图像形状不变性识别
本文描述了一种有效的人脸识别方法,分为两个步骤:(1)使用基于外观的模型从图像中分割人脸区域,(2)使用特征脸对分割的人脸区域进行人物识别。其效率不仅体现在对形状和纹理采用显式方法的外观模型生成上,而且体现在上述技术的综合使用上。结果是一种对面部表情差异具有鲁棒性的算法。此外,它将纹理的数量减少到图像纹理的12%,而不是考虑整个人脸图像。在Cohn Kanade面部数据库上进行了实验,使用10个受试者进行训练,7个受试者进行测试。这使得有面部表情和没有面部表情的人脸识别率都达到了92.85%。基于主成分分析(PCA)的人脸识别具有快速、高效的特点,提取的外观模型可进一步用于光照和姿态变化下的人脸识别和跟踪。这种组合很容易建模并实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nano particles on semiconductor manufacturing Graphical modeling and optimization of air interface standards for Software Defined Radios Per Packet Authentication for IEEE 802.11 wireless LAN An intelligent agri-information dissemination framework: An e-Government Characterization of waveguide slots using full wave EM analysis software HFSS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1