P. Ojala, A. Bousselham, L. Eriksson, A. Brahme, C. Bohm
{"title":"Influence of sensor arrangements and scintillator crystal properties on the 3D precision of monolithic scintillation detectors in PET","authors":"P. Ojala, A. Bousselham, L. Eriksson, A. Brahme, C. Bohm","doi":"10.1109/NSSMIC.2005.1596966","DOIUrl":null,"url":null,"abstract":"This paper reports the characterization and comparison of different sensor configurations for monolithic scintillation crystals via the calculation of a figure of a merit based on statistical (Fischer) information. The optimal precision of maximum likelihood determinations of interaction positions, i.e. where annihilation photons are absorbed in a monolithic (LSO) crystal, is approximated throughout a crystal block via Fischer information (related to the width of the maximum likelihood distribution) evaluated at a grid of points. Realistic positions and thus realistic distributions of points of interaction are estimated by applying a maximum likelihood algorithm to Monte Carlo data. The algorithm was based on pattern recognition using a Monte Carlo generated lookup table and the least square method. The precision of this method is compared with the optimal (Cramer-Rao) limit for selected points","PeriodicalId":105619,"journal":{"name":"IEEE Nuclear Science Symposium Conference Record, 2005","volume":"10 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium Conference Record, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2005.1596966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper reports the characterization and comparison of different sensor configurations for monolithic scintillation crystals via the calculation of a figure of a merit based on statistical (Fischer) information. The optimal precision of maximum likelihood determinations of interaction positions, i.e. where annihilation photons are absorbed in a monolithic (LSO) crystal, is approximated throughout a crystal block via Fischer information (related to the width of the maximum likelihood distribution) evaluated at a grid of points. Realistic positions and thus realistic distributions of points of interaction are estimated by applying a maximum likelihood algorithm to Monte Carlo data. The algorithm was based on pattern recognition using a Monte Carlo generated lookup table and the least square method. The precision of this method is compared with the optimal (Cramer-Rao) limit for selected points