Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching

Manuela Fischer, M. Ghaffari, F. Kuhn
{"title":"Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching","authors":"Manuela Fischer, M. Ghaffari, F. Kuhn","doi":"10.1109/FOCS.2017.25","DOIUrl":null,"url":null,"abstract":"We present a deterministic distributed algorithm that computes a (2δ-1)-edge-coloring, or even list-edge-coloring, in any n-node graph with maximum degree δ, in O(log^8 δ ⋅ log n) rounds. This answers one of the long-standing open questions of distributed graph algorithms} from the late 1980s, which asked for a polylogarithmic-time algorithm. See, e.g., Open Problem 4 in the Distributed Graph Coloring book of Barenboim and Elkin. The previous best round complexities were 2^{O(√{log n})} by Panconesi and Srinivasan [STOC92] and Õ(√{δ}) + O(log^* n) by Fraigniaud, Heinrich, and Kosowski [FOCS16]. A corollary of our deterministic list-edge-coloring also improves the randomized complexity of (2δ-1)-edge-coloring to poly(loglog n) rounds.The key technical ingredient is a deterministic distributed algorithm for hypergraph maximal matching, which we believe will be of interest beyond this result. In any hypergraph of rank r — where each hyperedge has at most r vertices — with n nodes and maximum degree δ, this algorithm computes a maximal matching in O(r^5 log^{6+log r } δ ⋅ log n) rounds.This hypergraph matching algorithm and its extensions also lead to a number of other results. In particular, we obtain a polylogarithmic-time deterministic distributed maximal independent set (MIS) algorithm for graphs with bounded neighborhood independence, hence answering Open Problem 5 of Barenboim and Elkins book, a \\big((log δ/ε)^{O(log 1/ε)}\\big)-round deterministic algorithm for (1+ε)-approximation of maximum matching, and a quasi-polylogarithmic-time deterministic distributed algorithm for orienting λ-arboricity graphs with out-degree at most \\lceil (1+ε)λ \\rceil, for any constant ε 0, hence partially answering Open Problem 10 of Barenboim and Elkins book.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

We present a deterministic distributed algorithm that computes a (2δ-1)-edge-coloring, or even list-edge-coloring, in any n-node graph with maximum degree δ, in O(log^8 δ ⋅ log n) rounds. This answers one of the long-standing open questions of distributed graph algorithms} from the late 1980s, which asked for a polylogarithmic-time algorithm. See, e.g., Open Problem 4 in the Distributed Graph Coloring book of Barenboim and Elkin. The previous best round complexities were 2^{O(√{log n})} by Panconesi and Srinivasan [STOC92] and Õ(√{δ}) + O(log^* n) by Fraigniaud, Heinrich, and Kosowski [FOCS16]. A corollary of our deterministic list-edge-coloring also improves the randomized complexity of (2δ-1)-edge-coloring to poly(loglog n) rounds.The key technical ingredient is a deterministic distributed algorithm for hypergraph maximal matching, which we believe will be of interest beyond this result. In any hypergraph of rank r — where each hyperedge has at most r vertices — with n nodes and maximum degree δ, this algorithm computes a maximal matching in O(r^5 log^{6+log r } δ ⋅ log n) rounds.This hypergraph matching algorithm and its extensions also lead to a number of other results. In particular, we obtain a polylogarithmic-time deterministic distributed maximal independent set (MIS) algorithm for graphs with bounded neighborhood independence, hence answering Open Problem 5 of Barenboim and Elkins book, a \big((log δ/ε)^{O(log 1/ε)}\big)-round deterministic algorithm for (1+ε)-approximation of maximum matching, and a quasi-polylogarithmic-time deterministic distributed algorithm for orienting λ-arboricity graphs with out-degree at most \lceil (1+ε)λ \rceil, for any constant ε 0, hence partially answering Open Problem 10 of Barenboim and Elkins book.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超图极大匹配的确定性分布式边着色
我们提出了一种确定性分布式算法,该算法在O(log^8 δ)内计算最大度为δ的任意n节点图的(2δ-1)边着色,甚至是列表边着色。& # x22C5;Log n)轮。这回答了20世纪80年代后期分布式图算法的一个长期开放问题,该问题要求使用多对数时间算法。例如,见Barenboim和Elkin的分布式图着色书中的开放问题4。之前的最佳轮复杂度是Panconesi和Srinivasan的2^{O(√{log n})}和Fraigniaud, Heinrich和Kosowski的Õ(√{δ}) + O(log^* n) [FOCS16]。我们的确定性列表边着色的一个推论也提高了(2δ-1)边着色到多(logogn)轮的随机复杂度。关键的技术成分是超图最大匹配的确定性分布式算法,我们相信这将超出这个结果的兴趣。在任意秩为r —其中每个超边缘最多有r个顶点—在n个节点和最大度δ的情况下,该算法在O(r^5 log^{6+log r} δ& # x22C5;Log n)轮。这种超图匹配算法及其扩展也导致了许多其他结果。特别地,我们得到了一个具有有界邻域独立图的多对数时间确定性分布最大独立集(MIS)算法,从而回答了Barenboim和Elkins著作中的开放问题5,一个(log δ/ε)^{0 (log 1/ε)}\big)-round的(1+ε)-逼近最大匹配的确定性算法。以及一种拟多对数时间确定性分布式算法,用于定向出度最多为\ lciel (1+ε)λ的λ\rceil,对于任意常数ε0,因此部分回答了巴伦博伊姆和埃尔金斯书中的开放问题10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Learning Mixtures of Well-Separated Gaussians Obfuscating Compute-and-Compare Programs under LWE Minor-Free Graphs Have Light Spanners Lockable Obfuscation How to Achieve Non-Malleability in One or Two Rounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1