Dynamic Weighted Hybrid Recommender Systems

Hong-Quan Do, T. Le, Byeongnam Yoon
{"title":"Dynamic Weighted Hybrid Recommender Systems","authors":"Hong-Quan Do, T. Le, Byeongnam Yoon","doi":"10.23919/ICACT48636.2020.9061465","DOIUrl":null,"url":null,"abstract":"Recommender Systems (RSs) have emerged since the mid-90s for dealing with the problem of information overload. They are commonly defined as software tools and techniques that serve as an assistant providing suggestions to the users. The two most familiar recommendation techniques are probably Collaborative filtering (CF) and Content-based filtering (CBF). Whereas CF computes recommendations based on past ratings of users with similar preferences, CBF assumes that each user operates independently, thus exploits only information derived from item features. Technically speaking, the performance of every single recommendation algorithm is limited and each has its own strengths and weaknesses, so recently more attentions are paid to the hybrid recommendation algorithms. In this work, we focus on the weighted hybridization and rather than using fixed weighted for the combination, we aim to propose a simple method to dynamic weight a combination of CF and CBF. Our experimental results on one of the most popular public datasets in the field of RSs - MovieLens have verified the effectiveness of our strategy against the traditional CF, and CBF approaches. It not only boost the prediction performance, but also alleviate the problem of new item cold start.","PeriodicalId":296763,"journal":{"name":"2020 22nd International Conference on Advanced Communication Technology (ICACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT48636.2020.9061465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Recommender Systems (RSs) have emerged since the mid-90s for dealing with the problem of information overload. They are commonly defined as software tools and techniques that serve as an assistant providing suggestions to the users. The two most familiar recommendation techniques are probably Collaborative filtering (CF) and Content-based filtering (CBF). Whereas CF computes recommendations based on past ratings of users with similar preferences, CBF assumes that each user operates independently, thus exploits only information derived from item features. Technically speaking, the performance of every single recommendation algorithm is limited and each has its own strengths and weaknesses, so recently more attentions are paid to the hybrid recommendation algorithms. In this work, we focus on the weighted hybridization and rather than using fixed weighted for the combination, we aim to propose a simple method to dynamic weight a combination of CF and CBF. Our experimental results on one of the most popular public datasets in the field of RSs - MovieLens have verified the effectiveness of our strategy against the traditional CF, and CBF approaches. It not only boost the prediction performance, but also alleviate the problem of new item cold start.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态加权混合推荐系统
推荐系统(RSs)自90年代中期以来出现,用于处理信息过载的问题。它们通常被定义为软件工具和技术,作为向用户提供建议的助手。两种最熟悉的推荐技术可能是协同过滤(CF)和基于内容的过滤(CBF)。CF是基于具有相似偏好的用户过去的评分来计算推荐的,而CBF假设每个用户都是独立操作的,因此只利用来自项目特征的信息。从技术上讲,每一种推荐算法的性能都是有限的,各有优缺点,因此近年来混合推荐算法受到了越来越多的关注。在这项工作中,我们将重点放在加权杂交上,而不是使用固定权重进行组合,我们的目标是提出一种简单的方法来动态加权CF和CBF的组合。我们在RSs领域最流行的公共数据集之一MovieLens上的实验结果验证了我们的策略对传统CF和CBF方法的有效性。它不仅提高了预测性能,而且缓解了新项目冷启动的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classify and Analyze the Security Issues and Challenges in Mobile banking in Uzbekistan 2 to 4 Digital Optical Line Decoder based on Photonic Micro-Ring Resonators Session Overview Analysis and Protection of Computer Network Security Issues Preliminary Study of the Voice-controlled Electric Heat Radiator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1